How many knots have the same group?
HTML articles powered by AMS MathViewer
- by Jonathan Simon
- Proc. Amer. Math. Soc. 80 (1980), 162-166
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574528-5
- PDF | Request permission
Abstract:
Let K be a knot in ${S^3},G = {\pi _1}({S^3} - K),n =$ number of prime factors of $K,\nu (G) =$ number of topologically different knot-complements with group G and $\kappa (G) =$ number of distinct knot types with group G. Theorem. If K is prime, then $\nu (G) \leqslant 2$. If $n \geqslant 2$, then $\nu (G) = \kappa (G) \leqslant {2^{n - 1}}$. For each $n \geqslant 2$, the bound ${2^{n - 1}}$ is the best possible. For K prime, we still have the conjecture $\nu (G) = \kappa (G) = 1$. If K is a cable-knot, then $\kappa (G) \leqslant 2$.References
- Gerhard Burde and Heiner Zieschang, Eine Kennzeichnung der Torusknoten, Math. Ann. 167 (1966), 169–176 (German). MR 210113, DOI 10.1007/BF01362170
- C. D. Feustel, On the torus theorem and its applications, Trans. Amer. Math. Soc. 217 (1976), 1–43. MR 394666, DOI 10.1090/S0002-9947-1976-0394666-3
- C. D. Feustel and Wilbur Whitten, Groups and complements of knots, Canadian J. Math. 30 (1978), no. 6, 1284–1295. MR 511562, DOI 10.4153/CJM-1978-105-0
- R. H. Fox, On the complementary domains of a certain pair of inequivalent knots, Indag. Math. 14 (1952), 37–40. Nederl. Akad. Wetensch. Proc. Ser. A 55. MR 0048024
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271 —, Verschlingungsinvarianten, S.-B. Preuss. Akad. Wiss. 26 (1933), 811-828.
- Jonathan Simon, On the problems of determining knots by their complements and knot complements by their groups, Proc. Amer. Math. Soc. 57 (1976), no. 1, 140–142. MR 402719, DOI 10.1090/S0002-9939-1976-0402719-1
- Jonathan Simon, Roots and centralizers of peripheral elements in knot groups, Math. Ann. 222 (1976), no. 3, 205–209. MR 418079, DOI 10.1007/BF01362577 W. Thurston, Proc. Conf. Topology of Manifolds (Univ. of Georgia, Athens, Georgia, August 1977) (to appear).
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 162-166
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574528-5
- MathSciNet review: 574528