A proof of a conjecture of A. H. Stone
HTML articles powered by AMS MathViewer
- by R. F. Dickman
- Proc. Amer. Math. Soc. 80 (1980), 177-180
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574531-5
- PDF | Request permission
Abstract:
In this paper we use the techniques of analytic topology to establish a conjecture of A. H. Stone: A perfectly normal, locally connected, connected space is multicoherent if and only if there exist four nonempty, closed and connected subsets ${A_0},{A_1},{A_2},{A_3}$ of X such that $\bigcup \nolimits _{i = 0}^3 {{A_i} = X}$ and the nerve of $\{ {A_0},{A_1},{A_2},{A_3}\}$ forms a closed 4-gon, i.e. ${A_i}$ meets ${A_{i + 1}}$ and ${A_{i - 1}}$ and no others (the suffices being taken $\bmod \; 4$).References
- Harold Bell and R. F. Dickman Jr., A counterexample to a conjecture of A. H. Stone, Proc. Amer. Math. Soc. 71 (1978), no. 2, 305–308. MR 482699, DOI 10.1090/S0002-9939-1978-0482699-5
- R. F. Dickman Jr., Some mapping characterizations of unicoherence, Fund. Math. 78 (1973), no. 1, 27–35. MR 322834, DOI 10.4064/fm-78-1-27-35
- R. F. Dickman Jr., Multicoherent spaces, Fund. Math. 91 (1976), no. 3, 219–229. MR 420578, DOI 10.4064/fm-91-3-219-229
- R. F. Dickman Jr., R. A. McCoy, and L. R. Rubin, $C$-separated sets in certain metric spaces, Proc. Amer. Math. Soc. 40 (1973), 285–290. MR 328882, DOI 10.1090/S0002-9939-1973-0328882-6
- R. F. Dickman Jr. and L. R. Rubin, $C$-separated sets and unicoherence, Fund. Math. 83 (1973), no. 1, 25–33. MR 334166, DOI 10.4064/fm-83-1-25-33
- J. H. V. Hunt, The Phragmén-Brouwer theorem for separated sets, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 1, 26–35. MR 431108
- A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), 427–447. MR 30743, DOI 10.1090/S0002-9947-1949-0030743-8
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 177-180
- MSC: Primary 54F55
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574531-5
- MathSciNet review: 574531