Morita equivalent semigroups of quotients
HTML articles powered by AMS MathViewer
- by John K. Luedeman
- Proc. Amer. Math. Soc. 80 (1980), 219-222
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577747-7
- PDF | Request permission
Abstract:
Let S be a monoid and $_SM$ and $_SN$ be retracts of each other. We show that ${\text {End}_S}(M)$ and ${\text {End}_S}(N)$ are Morita equivalent. Using this result, we show that if A and B are Morita equivalent monoids, then their semigroups of quotients are Morita equivalent.References
- Bernhard Banaschewski, Functors into categories of $M$-sets, Abh. Math. Sem. Univ. Hamburg 38 (1972), 49–64. MR 310035, DOI 10.1007/BF02996922
- Kazuhiko Hirata, Some types of separable extensions of rings, Nagoya Math. J. 33 (1968), 107–115. MR 236226
- Ulrich Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3 (1971/72), no. 4, 359–370. MR 286914, DOI 10.1007/BF02572973 J. Luedeman, Torsion theories and semigroups of quotients, Tech. Rep. 297, Clemson University, Clemson, S. C.
- Bodo Pareigis, Kategorien und Funktoren, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1969 (German). MR 0265427
- Darrell R. Turnidge, Torsion theories and rings of quotients of Morita equivalent rings, Pacific J. Math. 37 (1971), 225–234. MR 309985
- H. J. Weinert, $S$-sets and semigroups of quotients, Semigroup Forum 19 (1980), no. 1, 1–78. MR 558512, DOI 10.1007/BF02572502
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 219-222
- MSC: Primary 20M20; Secondary 20M50
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577747-7
- MathSciNet review: 577747