Strong liftings which are not Borel liftings
HTML articles powered by AMS MathViewer
- by Russell A. Johnson
- Proc. Amer. Math. Soc. 80 (1980), 234-236
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577750-7
- PDF | Request permission
Abstract:
The purpose of this note is to prove that any strong lifting of the circle commuting with translations cannot be a Borel lifting.References
- Edward G. Effros and Frank Hahn, Locally compact transformation groups and $C^{\ast }$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR 0227310
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573–601. MR 133429, DOI 10.2307/2372899
- A. Ionescu Tulcea and C. Ionescu Tulcea, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 63–97. MR 0212122
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438
- Russell A. Johnson, The measure-theoretic structure group is not invariant, Illinois J. Math. 21 (1977), no. 1, 178–184. MR 433419 J. von Neumann and A. H. Stone, The determination of representative elements in the residual classes of a Boolean algebra, Fund. Math. 25 (1935), 353-378.
- William A. Veech, Point-distal flows, Amer. J. Math. 92 (1970), 205–242. MR 267560, DOI 10.2307/2373504
- William A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), no. 5, 775–830. MR 467705, DOI 10.1090/S0002-9904-1977-14319-X
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 234-236
- MSC: Primary 46G15; Secondary 28A51, 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577750-7
- MathSciNet review: 577750