BOHR COMPACTIFICATION AND CONTINUOUS MEASURES

SADAHIRO SAEKI

Abstract. Let G be an LCA group with dual Γ. As a consequence of our main result, it is shown that every continuous regular measure μ concentrated on a Kronecker set and with norm > 1 has the property that $\{|\hat{\mu}| > 1\}$ is dense in the Bohr compactification of Γ.

Y. Katznelson [3] constructs a continuous measure μ on the circle group such that $\{n \in \mathbb{Z} : |\hat{\mu}(n)| > 1\}$ is dense in the Bohr compactification of \mathbb{Z}. In the present note we point out that every continuous measure (with norm > 1) concentrated on a Kronecker set has this property.

Let G be a nondiscrete LCA group with dual Γ, and let $M(G)$ be the convolution measure algebra of G (cf. [2]). For $\mu \in M(G)$, we denote by $\hat{\mu}$ the Fourier-Stieltjes transform of μ. It is easy to show that every measure $\mu \in M(G)$ concentrated on a Kronecker set (or a K_p-set) has the following property, which we call (HK): Given $\gamma \in \Gamma$, a Borel set E in G, and $\varepsilon > 0$, there exists $\chi \in \Gamma$ such that

$$\int_E |\gamma - \chi| \, d|\mu| + \int_{G \setminus E} |1 - \chi| \, d|\mu| < \varepsilon.$$

Theorem. Let $\mu \in M(G)$ be a continuous measure having property (HK), and let $\mu_1, \ldots, \mu_n \in M(G)$ be absolutely continuous with respect to μ. Then, for each nonempty (relatively) open subset U of $\{(\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma)) : \gamma \in \Gamma\} \subset \mathbb{C}^n$, the set

$$\{\gamma \in \Gamma : (\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma)) \in U\}$$

is dense in the Bohr compactification of Γ.

To prove this, we need two lemmas. Let $T = \{z \in \mathbb{C} : |z| = 1\}$ be the circle group.

Lemma 1. Given $\varepsilon > 0$, there exists a natural number r having the following property. If z_1, z_2, \ldots, z_N are finitely many elements of T, there exist $k(1), k(2), \ldots, k(r) \in \{1, 2, \ldots, N\}$ and $p(1), p(2), \ldots, p(r) \in \mathbb{Z}$ such that

$$|z_1 \cdots z_N - z_{k(1)}^{p(1)} \cdots z_{k(r)}^{p(r)}| < \varepsilon.$$

Proof. Let S be the subgroup of T that is generated by all elements of T having order less than $2\pi/\varepsilon$. Then S is a finite group. We define r to be the order of S.

Received by the editors September 26, 1979.

Key words and phrases. Bohr compactification, continuous measure, Kronecker set, K_p-set.

© 1980 American Mathematical Society

0002-9939/80/0000-0510/$01.75

244
Now let \(z_1, \ldots, z_N \in T \) be given. If \(\text{ord}(z_j) > 2\pi/e \) for some index \(j \), then \(\{z_k^p : p \in \mathbb{Z}\} \) is \(\varepsilon \)-dense in \(T \). Therefore it suffices to set \(k(1) = k(2) = \cdots = k(r) = j \), \(p(1) = p \) for some \(p \in \mathbb{Z} \), and \(p(2) = \cdots = p(r) = 0 \). So assume that \(\text{ord}(z_k) < 2\pi/e \) for all indices \(k \). Then \(\{z_k : 1 < k < N\} \) is contained in \(S \) and therefore consists of at most \(r \) different elements. Evidently this completes the proof.

Lemma 2. Suppose \(\rho \in M(G) \) is a nonnegative continuous measure having property (HK), \(F \) is a finite set in \(G \), \(\gamma_0, \gamma_1 \in \Gamma \) and \(\varepsilon > 0 \). Then there exists \(\gamma_2 \in \Gamma \) such that

\[
|\gamma_0 - \gamma_2| < \varepsilon \quad \text{on } F \quad \text{and} \quad \int |\gamma_1 - \gamma_2| \, d\rho < \varepsilon.
\]

Proof. Replacing \(\gamma_1 \) by \(\tilde{\gamma}_0 \gamma_1 \), we may assume that \(\gamma_0 = 1 \). Let us enumerate the elements of \(F \) as \(x_1, \ldots, x_n \), and define \(F_0 = \emptyset \) and \(F_j = \{x_1, \ldots, x_j\} \) for \(j = 1, 2, \ldots, n \). Put \(\nu = \delta_1 + \cdots + \delta_n + \rho \), where \(\delta_j \) is the unit point measure at \(x_j \). For \(\mu \in M(G) \), we denote by \(\Gamma(\mu) \) the closure of \(\Gamma \) in \(L^1(\mu) \). Notice that \(\Gamma(\mu) \) forms a multiplicative group.

By induction on \(j = 0, 1, \ldots, n \), we shall prove that given \(f \in \Gamma(\rho) \), there exists \(g \in \Gamma(\nu) \) such that \(g = f \) a.e. \(dp \) and \(g = 1 \) on \(F_j \). Since \(F \) is a finite set and \(F_0 = \emptyset \), this is obvious for \(j = 0 \). So assume that \(1 < j < n \) and that the result is true for \(j - 1 \). Choose and fix any \(f \in \Gamma(\rho) \) and any \(\varepsilon > 0 \).

Let \(r = r(\varepsilon) \) be the natural number given by Lemma 1. Since \(\rho \) is a continuous measure, we can partition \(\Gamma \) into disjoint Borel sets \(E_1, E_2, \ldots, E_N \) such that \(\rho(E_k) < \varepsilon/(2r) \) for all \(k = 1, 2, \ldots, N \). Without loss of generality, assume that \(N > r \). Since \(\rho \) has property (HK) and \(f \in \Gamma(\rho) \), it is obvious that there exist \(f_1, f_2, \ldots, f_N \) in \(\Gamma(\rho) \) such that \(f_k = f \) a.e. \(dp \) on \(E_k \), and \(f_k = 1 \) a.e. \(dp \) on \(G \setminus E_k \). It follows from the inductive hypothesis that there exist \(g_1, g_2, \ldots, g_N \) in \(\Gamma(\nu) \) such that \(g_k = f \) a.e. \(dp \) on \(E_k \), \(g_k = 1 \) a.e. \(dp \) on \(G \setminus E_k \), and \(g_k = 1 \) on \(F_{j-1} \). We now apply Lemma 1 with \(z_k = g_k(x_j) \) to find \(k(1), \ldots, k(r) \in \{1, 2, \ldots, N\} \) and \(p(1), \ldots, p(r) \in \mathbb{Z} \) such that

\[
\left| \prod_{k=1}^{N} g_k(x_j) - \prod_{i=1}^{r} \{ g_{k(i)}(x_j) \}^{p(i)} \right| < \varepsilon.
\]

There is no loss of generality in assuming that \(k(i) = i \) for all \(i = 1, \ldots, r \). Define \(h = (g_1 \cdots g_N)/(g_1^{p(1)} \cdots g_N^{p(r)}) \). Then \(h \) in an element of \(\Gamma(\nu) \), \(h = 1 \) on \(F_{j-1} \), \(|h(x_j) - 1| < \varepsilon \), and

\[
\int |h - f| \, d\rho = \sum_{k=1}^{r} \int_{E_k} |h - f| \, d\rho < 2 \sum_{k=1}^{r} \rho(E_k) < \varepsilon.
\]

Consequently we have proved that there exists a sequence \((h_m) \) in \(\Gamma(\nu) \) such that \(|h_m - 1| < 1/m \) on \(F_j \) and \(\int |h_m - f| \, d\rho < 1/m \) for all \(m > 1 \). Noting that \(F \) is a finite set and passing to a subsequence, we may assume that \((h_m) \) converges to an element \(g \in \Gamma(\nu) \). It is obvious that \(g = 1 \) on \(F_j \) and \(g = f \) a.e. \(dp \), which establishes our induction.

Finally we apply the above result for \(j = n \) and \(f = \gamma_1 \). Thus there exists \(g \in \Gamma(\nu) \) such that \(g = \gamma_1 \) a.e. \(dp \) and \(g = 1 \) on \(F_n = F \). Since \(\Gamma \) is dense in \(\Gamma(\nu) \), this completes the proof.
Proof of the Theorem. Let $\mu, \mu_1, \ldots, \mu_n \in M(G)$ and U be as in the hypotheses of the Theorem. Let $b(\Gamma)$ denote the Bohr compactification of Γ and let $\chi \in b(\Gamma)$ be given. We must prove that χ belongs to the closure of $\{\gamma \in \Gamma: (\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma)) \in U\}$ in $b(\Gamma)$.

To this end, choose any finite subset F of G and any $\eta > 0$. Then there exists γ_0 in Γ such that $|\chi - \gamma_0| < \eta/2$ on F. Let $\gamma_1 \in \Gamma$ and $\epsilon > 0$ be such that

$$\left\{ (\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma)) : \gamma \in \Gamma, |\hat{\mu}_j(\gamma_1) - \hat{\mu}_j(\gamma)| < \epsilon \forall j \right\} \subset U.$$

Now we define $\rho = |\mu_1| + \cdots + |\mu_n| \in M(G)$. Then ρ is a nonnegative continuous measure and has property (HK), as is easily seen. It follows from Lemma 2 that there exists γ_2 in Γ such that $|\gamma_0 - \gamma_2| < \eta/2$ on F and $\int |\gamma_1 - \gamma_2| d\rho < \epsilon$. Then we have $|\chi - \gamma_2| < |\chi - \gamma_0| + |\gamma_0 - \gamma_2| < \eta$ on F, and

$$|\hat{\mu}_j(\gamma_1) - \hat{\mu}_j(\gamma_2)| \leq \int |\gamma_1 - \gamma_2| d|\mu_j| < \int |\gamma_1 - \gamma_2| d\rho < \epsilon$$

for all $j = 1, 2, \ldots, n$. Therefore $(\hat{\mu}_1(\gamma_2), \ldots, \hat{\mu}_n(\gamma_2))$ is in U. Since F was an arbitrary finite set in G and $\eta > 0$ was arbitrary, this implies that χ is in the closure of the set $\{\gamma \in \Gamma: (\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma)) \in U\}$. The proof is complete.

In order to state a corollary to the Theorem, we let $q(G)$ denote the largest member of $\{2, 3, \ldots, \infty\}$ such that every neighborhood of $0 \in G$ contains an element of order q. Let $D(G) = \{z \in \mathbb{C}: |z| < 1\}$ if $q(G) = \infty$, and let $D(G)$ be the convex hull of $\{\exp(2\pi ik/q(G)): k \in \mathbb{Z}\}$ in the complex plane if $q(G) < \infty$.

Corollary. There exists a family $\{\mu_t: 0 < t < 1\}$ of continuous probability measures in $M(G)$ such that whenever U is a nonempty open subset of $D(G)^{[0,1]}$, then $\{\gamma \in \Gamma: (\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma)) \in U\}$ is dense in the Bohr compactification of Γ.

Proof. As is well known (cf. [1]), G contains a compact perfect set K which is either a Kronecker set (if $q(G) = \infty$) or a $K_{(q(G))}$-set (if $q(G) < \infty$). Let $\{E_t: 0 < t < 1\}$ be any family of pairwise disjoint perfect subsets of K, and let μ_t be any continuous probability measure concentrated on $E_t (0 < t < 1)$. Then it is easy to show that $(\hat{\mu}_1(\gamma), \ldots, \hat{\mu}_n(\gamma))$ is dense in $D(G)^{[0,1]}$. Therefore the required result is an immediate consequence of the present theorem.

References

Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, Japan