A NOTE ON HADAMARD PRODUCTS OF UNIVALENT FUNCTIONS

DAOUD BSHOUTY

Abstract. An example is constructed to show that a modified Hadamard product of two normalized univalent functions with real coefficients may not be univalent.

Let S denote the class of all functions $f(z) = z + c_2z^2 + \cdots$, analytic and univalent in the unit disk. Given two functions in S, $f_1(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $f_2(z) = z + \sum_{n=2}^{\infty} b_n z^n$, we define their modified Hadamard product by

$$(f_1 \ast f_2)(z) = z + \sum_{n=2}^{\infty} \frac{a_n b_n}{n} z^n.$$

Let S_R be the set of functions in S with real coefficients. In [1] Krzyz questions whether this modified Hadamard product of two functions in S_R is in S_R. The following argument leads to a counterexample. It depends on a weak version of a theorem of Jenkins (see [2, p. 120, Corollary 4.8 and Example 4.5]).

Theorem. Let $g(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be in S_R, and $0 < \lambda < 2$. If

$$\alpha_2 = \lambda(1 + \log(2/\lambda)) \equiv x(\lambda),$$

then

$$\alpha_3 < 1 + \frac{1}{4} \lambda^2 + \lambda^2 \left(\frac{1}{2} + \log(2/\lambda) \right)^2 \equiv Y(\lambda) = y(x).$$

For every choice of x, there exists $g_x(z)$ in S_R for which equality holds in (2).

In fact, given $0 < x_1 < 2$, then $h = g_{x_1} \ast g_{x_2}$ is not in S_R for x_2 sufficiently close to 2.

Note that $h(z) = z + x_1 x_2 z^2/2 + y(x_1) y(x_2) z^3/3 + \cdots$, and if it were in S_R, then

$$y(x_1) y(x_2)/3 < y(x_1 x_2/2).$$

Fix x_1, and put $x_2 = 2 - r$, for $0 < r < 2$, then

$$\frac{y(x_1)}{3} (y(2) - ry'(2) + o(r)) < y(x_1) - \frac{r x_1}{2} y'(x_1) + o(r).$$

Received by the editors August 29, 1979 and, in revised form, November 6, 1979.

$y(2) = 3$ and from (1) and (2), $y'(x) = 2\lambda \log(2/\lambda)$. We remain with

$$r \frac{x_1}{2} y'(x_1) + o(r) < 0$$

which leads to a contradiction for small values of r.

REFERENCES

Department of Mathematics, Technion, Israel Institute of Technology, Haifa, Israel.