A direct proof that the RC-integral is equivalent to the $D^{\ast }$-integral
HTML articles powered by AMS MathViewer
- by Yôto Kubota
- Proc. Amer. Math. Soc. 80 (1980), 293-296
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577762-3
- PDF | Request permission
Abstract:
We give a direct and short proof that the Riemann complete integral defined by R. Henstock is equivalent to the special Denjoy integral.References
- Roy O. Davies and Zeev Schuss, A proof that Henstock’s integral includes Lebesgue’s, J. London Math. Soc. (2) 2 (1970), 561–562. MR 265526, DOI 10.1112/jlms/2.Part_{3}.561
- R. Henstock, A new descriptive definition of the Ward integral, J. London Math. Soc. 35 (1960), 43–48. MR 110780, DOI 10.1112/jlms/s1-35.1.43
- Ralph Henstock, Theory of integration, Butterworths, London, 1963. MR 0158047
- Ralph Henstock, A Riemann-type integral of Lebesgue power, Canadian J. Math. 20 (1968), 79–87. MR 219675, DOI 10.4153/CJM-1968-010-5
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- A. J. Ward, The Perron-Stieltjes integral, Math. Z. 41 (1936), no. 1, 578–604. MR 1545641, DOI 10.1007/BF01180442
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 293-296
- MSC: Primary 26A39
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577762-3
- MathSciNet review: 577762