THE EPIREFLECTIVE HULL OF THE CATEGORY
OF T_1 DISPERSED SPACES

V. NEUMANN-LARA AND R. G. WILSON

Abstract. An internal characterization is given of those spaces which can be
embedded in products of T_1 dispersed spaces.

A set X with a topology t will be denoted by (X, t).

A subset Y of a topological space (X, t) is said to be autonomous (in X) if for all
subspaces Z of X which properly contain Y, there are disjoint, nonempty closed
subsets U and V of Z such that $Y \subset U$ and $U \cup V = Z$.

The concept of an autonomous subset was introduced and investigated in [3]. In
particular it was shown there that an autonomous subset of X is closed and that
$a(t) = \{ Y^c : Y = \emptyset \text{ or } Y \text{ is autonomous in } (X, t) \}$ is a topology for X which is
clearly no finer than t. In addition, it was proved that the class function A from the
class TOP of all topological spaces to itself defined by $A[(X, t)] = (X, a(t))$ is a
functor on the category of all topological spaces with continuous maps. In the
future, unless confusion may result, we will write X in place of (X, t) and $A(X)$ will
be used to denote $(X, a(t))$. Clearly, any subset of $A(X)$ may be considered a
subset of X and vice versa.

The proofs of the following two lemmas are found in [3].

Lemma 1. Each component and each clopen (open and closed) subset of X is
autonomous.

Lemma 2. If Y is an autonomous subset of X and W is an autonomous subset of Y
(with the relative topology), then W is an autonomous subset of X.

Theorem 1. For each topological space X, $a(a(t)) = a(t)$ and so $A(A(X)) = A(X)$.

Proof. It suffices to show that any closed subset C of $A(X)$ is autonomous in
$A(X)$. Considered as a subset of X, C is autonomous. Suppose $Z \supseteq C$, and define
Z^* to be the closure of Z in $A(X)$. Since C is autonomous in X there exist disjoint
nonempty relatively t-closed subsets U and V of Z^* such that $C \subset U$ and
$U \cup V = Z^*$. Thus U and V are clopen subsets of Z^* with the relative t-topology
and hence by Lemma 1 are autonomous in Z^*. Since Z^* is closed in $A(X)$, Z^* with
the relative t-topology is autonomous in X, and thus by Lemma 2, U and V are autonomous subsets of X. Thus $U \cap Z$ and $V \cap Z$ are disjoint relatively $a(t)$-closed subsets of Z such that $U \cap Z \supset C$ and whose union is Z. It remains only to show that $V \cap Z \neq \emptyset$. However, U and V are relatively $a(t)$-closed subsets of Z^* which is the $a(t)$-closure of Z and so the result follows.

Corollary 1.1. $A(X)$ is totally disconnected if and only if X is totally disconnected.

Proof. Since $a(t)$ is no finer than t, it follows that if $A(X)$ is totally disconnected so is X.

Conversely, if X is totally disconnected then each point of X is a component and hence all singleton subsets of X are autonomous by Lemma 1. It follows immediately that $A(X)$ is T_1. If $A(X)$ is not totally disconnected, then there are points of $A(X)$ which are not components, and since it is clear that a proper subset of a component can never be autonomous, it follows that $A(A(X))$ is not T_1. This contradicts the theorem.

A topological space (X, t) is said to be **autonomously generated** if $t = a(t)$. Recall that a space is dispersed if every nonempty subspace has an isolated point.

Theorem 2. Every T_1 zero-dimensional space and every T_1 dispersed space is autonomously generated. Also, every autonomously generated T_1-space is totally disconnected.

Proof. The first and last statements of the theorem are obvious. Now suppose (X, t) is dispersed, $C \subseteq X$ is closed and $Z^* \supset C$. $Z - C$ has an isolated point which must be open and closed in Z since C is closed and X is T_1. If p is such a point then $\{ p \}$ and $Z - \{ p \}$ have the required properties.

A space in which every quasi-component is a singleton is said to be **totally separated.** That there exist totally separated spaces which are not autonomously generated is shown by the following example:

Let X be the space of $[4]$, without the dispersion point. X is clearly totally separated. If Y is an odd-numbered row of X then Y is closed in X, but there is no clopen subset of X contained in $X - Y$; thus Y is not autonomous in X. Indeed, it is not hard to show that $A(A(X)) \simeq Q$, the space of rational numbers.

Theorem 3. The category AG of all autonomously generated spaces is epireflective in the category TOP of all topological spaces; furthermore, the functor A is the epireflection.

Proof. Let X be a topological space and $Y \in AG$. Then $A(Y) \simeq Y$. But it was shown in [3] that any map $f: X \to Y$ extends to a map $f^*: A(X) \to A(Y)$ in such a way that the following diagram is commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
i_x & \downarrow & \downarrow i_y \\
A(X) & \xrightarrow{f^*} & A(Y)
\end{array}
\]
where \(i_x \) denotes the identity map from \(X \) to \(A(X) \).

Since \(A(Y) \approx Y \), the epireflective character of the subcategory \(AG \) follows from the facts that \(i_x \) is clearly an epimorphism and that \(A(X) \in AG \).

Corollary 3.1. The category \(AG \) is closed with respect to the taking of products and subspaces.

Proof. This is \([1, \text{Theorem 1.2.1}]\).

Corollary 3.2. Any subspace of a product of \(T_1 \) dispersed spaces is autonomously generated.

It is clear from Corollary 3.1, that \(\prod_{a \in I}[A(X_a)] \approx A[\prod_{a \in I}A(X_a)] \) for any family \(\{X_a: a \in I\} \) of topological spaces. It follows that the topology of \(A(\prod_{a \in I}X_a) \) is no weaker than the topology of \(\prod_{a \in I}A(X_a) \). We do not know in general whether or not \(A(\prod_{a \in I}X_a) \approx \prod_{a \in I}A(X_a) \).

We denote by \(D(X) \) the quotient space obtained from \(X \) by identifying the points of each component. The quotient map will be denoted by \(d \). It is not hard to show that \(D(X) \) is totally disconnected and hence \(T_1 \).

Theorem 4. The category \(AG_1 \) of all autonomously generated \(T_1 \)-spaces is epireflective in \(TOP \) (and in the category \(\mathcal{T}_1 \) of all \(T_1 \)-spaces). Furthermore, the epireflection is \(X \rightarrow A(D(X)) \) and \(A(D(X)) \approx D(A(X)) \).

Proof. It is clear that if \(X \in TOP \) or \(\mathcal{T}_1 \), \(Y \in AG_1 \) and \(f: X \rightarrow Y \) is continuous, then there exist maps \(f_d \) and \(f^*_d \) which make the following diagram commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{d} & D(X) \\
& \downarrow{f} & \downarrow{f_d} \\
& A(D(X)) & \xrightarrow{i_x} A(D(X))
\end{array}
\]

Since \(D(X) \) is totally disconnected, it follows that \(A(D(X)) \in AG_1 \) (Corollary 1.1). Also, \(i_x \circ d \) is clearly an epimorphism, and the result follows.

To show that \(A(D(X)) \) and \(D(A(X)) \) are homeomorphic, we note that if \(Y \in AG_1 \) and \(g: X \rightarrow Y \) is continuous, there exist maps \(g^* \) and \(g_d^* \) which make the following diagram commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{i_x} & A(X) \\
& \downarrow{g} & \downarrow{g_d^*} \\
& A(X) & \xrightarrow{d} D(A(X))
\end{array}
\]

The result will follow from the unicity of the epireflective object if we can show that \(D(A(X)) \in AG_1 \); or more simply, that \(D(Y) \in AG_1 \) whenever \(Y \in AG \). To this end, let \(C \) be a closed subset of \(D(Y) \). Since \(D(Y) \) is totally disconnected and
hence \(T_1 \), it suffices to show that \(C \) is autonomous. Suppose \(Z \supseteq C \). Since \(d \) is onto, it follows that \(d^{-1}[Z] \supseteq d^{-1}[C] \) and since \(d^{-1}[C] \) is closed it is autonomous in \(Y \). Thus there are nonempty, relatively closed subsets \(U \) and \(V \) of \(d^{-1}[Z] \) such that \(U \cup V = d^{-1}[Z] \) and \(d^{-1}[C] \subseteq U \). Since no proper subset of a component of \(Y \) is autonomous in \(Y \), it follows that the relative topology on each component of \(Y \) is indiscrete. Now there exist closed subsets \(U^* \) and \(V^* \) of \(Y \) such that \(U = U^* \cap d^{-1}[Z] \) and \(V = V^* \cap d^{-1}[Z] \) and so if \(x \in U \) and \(y \in V \) then \(x \in U^* - V^* \) and \(y \in V^* - U^* \). Thus \(x \) and \(y \) belong to different components of \(Y \) and so \(d(x) \neq d(y) \). It follows that \(d[U] \cap d[V] = \emptyset \). Since \(U^* \) and \(V^* \) are closed in \(Y \), they are the union of components of \(Y \) and hence \(d^{-1}[d[U^*]] = U^* \) and \(d^{-1}[d[V^*]] = V^* \) and so \(d[U^*] \) and \(d[V^*] \) are closed in \(D(Y) \); clearly, \(d[U] = d[U^*] \cap Z \) and \(d[V] = d[V^*] \cap Z \) and so \(d[U^*] \cap Z \) and \(d[V^*] \cap Z \) are disjoint relatively closed subsets of \(Z \) whose union is \(Z \) and such that \(C \subseteq d[U^*] \cap Z \).

The following easy lemma is left to the reader:

Lemma 3. If \(C \) is autonomous in \(X \) and \(Y \subseteq X \), then either \(C \cap Y = \emptyset \) or \(C \cap Y \) is autonomous in \(Y \).

We are now in a position to prove the main result of this article, namely that the autonomously generated \(T_1 \)-spaces form the epireflective hull in \(\mathcal{T}_1 \) or in TOP of the category of \(T_1 \) dispersed spaces.

Theorem 5. A topological space \(X \) is an autonomously generated \(T_1 \)-space if and only if it can be embedded in a product of \(T_1 \) dispersed spaces.

Proof. Suppose that \(X \) is an autonomously generated \(T_1 \)-space and let \(C \subseteq X \) be closed. Since \(C \) is autonomous in \(X \), there is an open and closed subset of \(X \) contained in \(X - C \). Let \(\mathcal{G}_1 \) be a maximal family of disjoint clopen subsets of \(X \) contained in \(X - C \). For each ordinal \(\alpha \), having selected \(\mathcal{G}_\beta \) for each \(\beta < \alpha \) and supposing that \(X - \bigcup_{\beta < \alpha} (\bigcup \mathcal{G}_\beta) \supseteq C \), we select \(\mathcal{G}_\alpha \) as follows: \(\mathcal{G}_\alpha \) is a maximal family of disjoint relatively clopen subsets of \(X - \bigcup_{\beta < \alpha} (\bigcup \mathcal{G}_\beta) \) which are disjoint from \(C \). The existence of such a family is guaranteed by Lemma 3. Let \(\sigma \) be the first ordinal for which \(X - \bigcup_{\beta < \sigma} (\bigcup \mathcal{G}_\beta) = C \) and let \(\mathcal{G}_\sigma = C \). Then the family \(X_\sigma = \{ F : F \in \mathcal{G}_\sigma \text{ some } \alpha < \sigma \} \) is a partition of \(X \) and it is easy to see that each member of this partition is a closed subset of \(X \). If \(X_\sigma \) is now given the quotient topology and \(q_\sigma : X \to X_\sigma \) denotes the quotient map, then it is clear that \(X_\sigma \) becomes a \(T_1 \)-space and that if \(p \in X - C \), then \(q_\sigma(p) \notin q_\sigma[C] \); in other words, \(q_\sigma \) separates \(C \) from any point \(p \in X - C \). The necessity follows from [5, Theorem 8.16] if we can show that \(X_\sigma \) is dispersed. Let \(B \subseteq X_\sigma \) and \(\alpha = \min\{ \beta : \{ F \} \in B \text{ for some } F \in \mathcal{G}_\beta \} \). Now fix \(F_0 \in \mathcal{G}_\alpha \) such that \(\{ F_0 \} \in B \). It suffices to show that \(\{ F_0 \} \) is an isolated point of \(q_\sigma[X - \bigcup_{\gamma < \alpha} (\bigcup \mathcal{G}_\gamma)] \) since this latter set clearly contains \(B \). Since \(\{ F_0 \} \) is closed in \(X_\alpha \), it is required to show that \(\{ F_0 \} \) is open in \(q_\sigma[X - \bigcup_{\gamma < \alpha} (\bigcup \mathcal{G}_\gamma)] \); thus we need to find an open set \(U \) in \(X_\alpha \) such that \(\{ F_0 \} = U \cap q_\sigma[X - \bigcup_{\gamma < \alpha} (\bigcup \mathcal{G}_\gamma)] \). We take \(U = q_\sigma[\bigcup_{\gamma < \alpha} (\bigcup \mathcal{G}_\gamma) \cup F_0] \) which is open in \(X_\alpha \) since \(q_\sigma^{-1}[U] = \bigcup_{\gamma < \alpha} (\bigcup \mathcal{G}_\gamma) \cup F_0 \) which is open in \(X \), and clearly has the desired property.
The theorem now follows from Corollary 3.2.

The space X_c constructed in the above theorem is not in general uniquely determined but will depend on the selection of the families \mathcal{F}_a. If X is a T_2-space, X_c may or may not be Hausdorff for a fixed C—in fact, if X is nonregular, at least one of the spaces X_c will not be Hausdorff. However, we do not know whether or not every autonomously generated T_2-space can be embedded in a product of T_2 dispersed spaces.

We now give another characterization of autonomously generated T_1-spaces.

Theorem 6. A T_1-space X is autonomously generated if and only if for each closed set $C \subseteq X$, there is a T_1 dispersed space Y and a continuous surjection $f: X \to Y$ such that $C = f^{-1}[y]$ for some $y \in Y$.

Proof. The necessity follows from the construction described in Theorem 5.

For the sufficiency, let $C \subseteq X$ be closed, Y be a T_1 dispersed space, $f: X \to Y$ continuous and onto such that $C = f^{-1}[y]$ for some $y \in Y$. If $Z \supsetneq C$, then it follows that $f[Z] \supsetneq f[C]$. But Y is T_1 and dispersed and hence is totally disconnected; thus $f[C] = \{y\}$ is autonomous. Thus there is a relatively clopen subset U of $f[Z]$ disjoint from $f[C]$. Then $f^{-1}[U]$ is relatively open and closed in $f^{-1}[f[Z]]$ and so $f^{-1}[U] \cap Z$ is relatively open and closed in Z, is disjoint from C and is nonempty.

As a final remark, we note that the category of all autonomously generated T_1-spaces cannot be simply generated either in \mathbf{TOP} or \mathbf{S}_1, since the spaces Q_n constructed in [2] are all T_2 and dispersed.

Bibliography