THE HOMOTOPY THOM CLASS OF A SPHERICAL FIBRATION

HOWARD J. MARCUM AND DUANE RANDALL

ABSTRACT. We investigate the following problems. Given a spherical fibration, does the Whitehead square of its homotopy Thom class vanish? If so, is the homotopy Thom class a cyclic homotopy class?

1. Introduction. Let $p : E \to B$ denote a Hurewicz fibration ξ with fiber F. Applying the mapping cone construction to the vertical maps in the commutative diagram

$$
\begin{array}{ccc}
F & \subset & E \\
\downarrow & & \downarrow p \\
* & \subset & B
\end{array}
$$

yields a map $\mu : \Sigma F \to T(\xi)$. The Thom space $T(\xi)$ of ξ is the mapping cone of p while μ is by definition the homotopy Thom class of ξ.

We consider only spherical fibrations over locally finite, connected CW-complexes. Let $p : E \to B$ be a fibration ξ whose fiber is homotopy equivalent to S^{n-1}. Recall that $T(\xi)$ is then $(n-1)$-connected and μ generates $\pi_n(T(\xi))$, which is isomorphic to \mathbb{Z} if p is orientable and $\mathbb{Z}/2$ otherwise. Let $\tilde{p} : \tilde{E} \to B$ denote the associated cone fiber space of ξ. (See [4, Appendix].) The fiber inclusion of pairs $(CF, F) \subset (E, E)$ induces a map of quotient spaces $CF/F \to \tilde{E}/E$ which we can identify with μ. Let U denote the Thom class in integral cohomology for ξ oriented. Now μ is dual to U under the Hurewicz isomorphism with respect to the orientation on CF/F induced by U. For ξ nonorientable, μ is clearly dual to the mod 2 Thom class under the mod 2 Hurewicz isomorphism. The homotopy Thom class of an orthogonal vector bundle is defined with reference to the associated sphere bundle.

In this note we investigate the following:

Problem. Given a spherical fibration with homotopy Thom class μ, does the Whitehead square $[\mu, \mu]$ vanish? If so, is μ a cyclic homotopy class?

Let ω_n denote the Whitehead square $[\iota_n, \iota_n] \in \pi_{2n-1}(S^n)$ where ι_n represents the identity map. This problem generalizes the classical problem of the vanishing of ω_n, since ι_n is the homotopy Thom class of the trivial fibration $p : S^{n-1} \to \ast$.

Received by the editors May 25, 1979 and, in revised form October 9, 1979.

Key words and phrases. Spherical fibration, Whitehead square, cyclic homotopy class, span of a manifold, immersion.

© 1980 American Mathematical Society
0002-9939/80/0000-0531/$02.50
353
2. Vanishing conditions for $[\mu, \mu]$.

Proposition 2.1. Let $p: E \to B$ denote an oriented $(2m - 1)$-spherical fibration ξ. If the Euler class $\chi(\xi)$ is divisible by an odd prime in $H^{2m}(B; \mathbb{Z})$, then $[\mu, \mu] \neq 0$. Further, $[\mu, \mu]$ is nontrivial in the rational homotopy of $T(\xi)$ if $\chi(\xi)$ is a torsion class.

Proof. Suppose $[\mu, \mu] = 0$ and set $n = 2m$. Thus $\mu: S^n \to T(\xi)$ admits an extension $g: S^n \cup_{\omega} e^{2n} \to T(\xi)$. Let U denote the Thom class of ξ in integral cohomology. Since $S^n \cup_{\omega} e^{2n}$ is the Thom complex of the tangent bundle $\tau(S^n)$ of S^n, g^*U is (up to sign) the Thom class for $\tau(S^n)$. Up to sign,

$$g^*(U \cdot \chi(\xi)) = (g^*U)^2 = \chi(S^n) \cdot g^*U = 2(\text{generator}).$$

Thus $U \cdot \chi(\xi)$ and consequently $\chi(\xi)$ via the Thom isomorphism are not divisible by any odd prime.

Suppose that $\chi(\xi)$ is a torsion class. Since the cup product pairing $H^n(T\xi; \mathbb{Z}) \otimes H^n(T\xi; \mathbb{Z}) \to H^{2n}(T\xi; \mathbb{Z})$ is not injective, $[\mu, \mu]$ is not a torsion class in $\pi_{2n-1}(T(\xi))$ by [13].

Remarks. (i) It follows from Proposition 2.1 that $[\mu, \mu]$ is nontrivial for any oriented $(2m - 1)$-spherical fibration over B with dimension $B < 2m$.

(ii) The converse to Proposition 2.1 is false. For any integer $n > 1$, consider $\xi = \eta$ over complex projective space CP^n where η denotes the complex Hopf line bundle. If $[\mu, \mu] = 0$, then $\Sigma(c \circ h)$ must have order 2 in $\pi_{4n}(\Sigma(CP^{2n-1}/CP^{n-1}))$ where $h: S^{4n-1} \to CP^{2n-1}$ is the Hopf fibration and c denotes the collapsing map. But the p-primary component of $\Sigma(c \circ h)$ must be nontrivial for any odd prime $p < n + 1$ such that p does not divide $n + 1$. Thus $[\mu, \mu] \neq 0$ while $\chi(\xi)$ is not divisible by any odd prime.

Proposition 2.2. Let n be any odd integer such that $n + 1$ is not a power of 2. Let $p: E \to B$ denote any $(n - 1)$-spherical fibration ξ with dimension $B < n - 2s$ where the positive integer s is defined by $n + 1 \equiv 2s \pmod{2^{s+1}}$. Then $[\mu, \mu]$ has order 2 where μ denotes the homotopy Thom class of ξ. If ξ has trivial Stiefel-Whitney classes and dimension $B < n$, then again $[\mu, \mu]$ is nonzero.

Proof. We write $n + 1 = 2^s + 2t$. Expansion of Sq^2Sq^{2t} by the Adem relations and further decompositions of Sq^j for $n - 2^{s-1} < j < n$ yield a relation

$$Sq^2Sq^{2t} + \sum_{i=0}^{s-1} Sq^{2^i} \beta_i = 0$$

on mod 2 classes of dimension $< n$. Here β_i is understood to be the trivial operation whenever necessary. Let φ denote any nonstable secondary operation associated to the above relation. Suppose either that dimension $B < n - 2^s$ or else that dimension $B < n$ and ξ has trivial Stiefel-Whitney classes. Clearly φ is defined on the mod 2 Thom class U of ξ and $\varphi(U)$ vanishes with zero indeterminacy by dimensionality. Recall that φ detects ω_n by [3]; that is, φ is nontrivial in the mapping cone of ω_n. So $\mu: S^n \to T(\xi)$ cannot extend to the mapping cone of ω_n by naturality of φ.

Remark. The following example shows the difficulty in obtaining an analogous result whenever \(n + 1 \) is a power of 2 and \(n > 7 \). Let \(\alpha \) denote the real Hopf line bundle over \(S^1 \). Let \(\xi \) denote the sphere bundle of \(\sigma \oplus (n - 1) \) over \(S^1 \). Note that \(T(\xi) = S^n \cup_2 e^{n+1} \). For \(n \) odd and \(j < 2n \), \(2 \cdot \pi_j(S^n) \) is the kernel of the morphism \(\pi_j(S^n) \to \pi_j(S^n \cup_2 e^{n+1}) \) induced by the inclusion of the bottom cell. Thus \([\mu, \mu] = 0 \) iff \(\omega_n \in 2 \cdot \pi_{2n-1}(S^n) \). For example, \(\omega_{15} \in 2 \cdot \pi_{29}(S^{15}) \) by [12].

Proposition 2.3. Let \(p: E \to B \) denote an oriented \((n - 1)\)-spherical fibration \(\xi \) over a finite complex \(B \). For \(n \) even, suppose that the reduced integral homology of \(B \) is torsion. Then \([\mu, \mu] \) has infinite order in \(\pi_{2n-1}(T(\xi)) \). For \(n \) odd, suppose that the reduced integral homology consists of odd torsion. Then \([\mu, \mu] = 0 \) iff \(n = 1, 3 \) or 7.

Proof. The case \(n \) even is a consequence of Proposition 2.1. For \(n \) odd with \(n > 1 \), the induced map \(\mu(2): S^n(\xi) \to T(\xi)(2) \) on the simply-connected 2-localizations induces an isomorphism on integral homology and so is a homotopy equivalence. Thus \([\mu, \mu] = \mu_*\omega_n = 0 \) iff \(\omega_n = 0 \).

We have been informed that W. Sutherland has unpublished results on the homotopy Thom class. We thank the referee for his helpful comments. The following two theorems are somewhat related to a conjecture of Mahowald in [9, p. 255].

We recall that the span of a smooth connected manifold \(M \) is the maximum number of linearly independent vector fields on \(M \). A spin manifold is an oriented manifold for which \(w_2 M = 0 \).

Theorem 2.4. Let \(M^n \) be a closed connected oriented smooth manifold with \(n \equiv 1 \) (mod 4). If \([\mu, \mu] = 0 \) then \(1 < \text{span} M < 2 \) where \(\mu: S^n \to T(\tau M) \) denotes the homotopy Thom class of the tangent bundle. Let \(\nu \) denote the normal bundle to an embedding of \(M^n \) in \(\mathbb{R}^{2n} \). Then \([\bar{\mu}, \bar{\nu}] \) has order 2 where \(\bar{\mu}: S^n \to T(\nu) \) denotes the homotopy Thom class.

Proof. We can suppose \(n > 1 \) since \(\text{span} S^1 = 1 \) and \(\mu_*\omega_1 = 0 \). Clearly \(\text{span} M^n = 1 \) if the Stiefel-Whitney class \(w_{n-1} M \neq 0 \). So assume that \(w_{n-1} M = 0 \). By [8] let \(\Phi \) denote the nonstable secondary operation associated to the relation \(\text{Sq}^2\text{Sq}^{n-1} = 0 \) on integral classes of dimension \(< n \) such that

\[
\Phi(U) = U \cdot \left(O(\tau M) + w_2 M \cdot w_{n-2} M \right)
\]

with zero indeterminacy. Here \(U \) denotes the Thom class of \(\tau M \) while \(O(\tau M) \) denotes the unique higher-order obstruction to two linearly independent sections. Now \(\Phi(U) \neq 0 \) since \([\mu, \mu] = 0 \) by hypothesis and \(\Phi \) detects \(\omega_n \) by [3]. So \(O(\tau M) \neq 0 \) iff \(w_2 M \cdot w_{n-2} M = 0 \). Either \(O(\tau M) \neq 0 \) or \(w_{n-2} M \neq 0 \) so span \(M < 2 \).

Similarly, \(\Phi(U_\nu) \) is defined and vanishes with zero indeterminacy. We recall from [7] that the top cell in the Thom complex \(T(\nu) \) associated to the normal bundle of an embedding in Euclidean space is spherical. Since \(\Phi \) detects \(\omega_n, [\bar{\mu}, \bar{\nu}] = \bar{\mu}_* \omega_n \) must be nontrivial and so has order 2.
Theorem 2.5. Let M^n be a closed connected smooth spin manifold with $n \equiv 3 \pmod{8}$. If $[\mu, \mu] = 0$, then span $M = 3$ where $\mu: S^n \to T(\tau M)$ denotes the homotopy Thom class of τM. Let ν denote the normal bundle to an embedding of M^n in \mathbb{R}^{2n}. Then $[\bar{\mu}, \bar{\mu}]$ has order 2 for $n > 3$ where $\bar{\mu}$ denotes the homotopy Thom class for ν.

Proof. The case $n = 3$ follows since M^3 is parallelizable and $\omega_3 = 0$. Now Atiyah-Dupont [2] proved that span $M^n > 3$. Write $n = 8t + 3$ for positive t and suppose that $w_{n-3}M = 0$. By [10] there exists a nonstable secondary operation Ω associated to the relation $Sq^4Sq^8' = 0$ on integral classes x of degree $< 8t + 3$ for which $Sq^2x = 0$ such that $\Omega(U) = U \cdot O(\tau M)$ with zero indeterminacy. Here $O(\tau M)$ represents a second-order k-invariant to lifting τM in the fibration

$$B \text{Spin}(n - 4) \to B \text{Spin}(n).$$

(2.6)

By [3] Ω detects ω_n. Since $[\mu, \mu]$ vanishes by hypothesis, $\Omega(U)$ must be nontrivial. Thus $O(\tau M) \neq 0$ so span $M = 3$.

Now $\Omega(U_\nu)$ is defined and vanishes with zero indeterminacy since the top cell in $T(\nu)$ is spherical. If $[\bar{\mu}, \bar{\mu}]$ vanishes, then $\Omega(U_\nu)$ must be nontrivial since Ω detects ω_n by [3]. Thus $[\bar{\mu}, \bar{\mu}]$ has order 2.

3. Is μ cyclic? Recall that μ is cyclic if the map

$$\mu \nabla 1: S^n \vee T(\xi) \to T(\xi)$$

(3.1)

extends to the product $S^n \times T(\xi)$. Equivalently, μ is cyclic iff μ belongs to the nth evaluation subgroup $G_n(T(\xi))$ of $T(\xi)$. If μ is cyclic, then $[\mu, \mu] = 0$ by the composite

$$S^n \times S^n \overset{1 \times \mu}{\to} S^n \times T(\xi) \overset{g}{\to} T(\xi)$$

(3.2)

where g extends $\mu \nabla 1$.

If μ is cyclic for an oriented $(n - 1)$-spherical fibration ξ and $T(\xi)$ is a suspension, Gottlieb showed in [5, Corollary 5-5] that $n = 1, 3$ or 7 and $T(\xi)$ is homotopy equivalent to S^n.

Theorem 3.3. Suppose $\mu: S^n \to T(\xi)$ is cyclic for an oriented fibration $p: E \to B$ with B a finite connected complex. If $w_1(\xi)$ is trivial, then $T(\xi)$ is homotopy equivalent to S^n and $n = 1, 3$ or 7. If $w_1(\xi) \neq 0$, then n is odd, the Euler-Poincaré characteristic $\chi(B) = 1$, and the reduced integral homology of B is a vector space over $\mathbb{Z}/2$. Further, $n = 7$ if ξ is orientable with respect to complex K-theory.

Proof. By hypothesis $G_n(T(\xi)) = \pi_n(T(\xi))$ so n must be odd by [6, Theorem 1]. Suppose $w_1(\xi) = 0$. Assume that the reduced integral homology of B is nontrivial and let x be a nontrivial cohomology class of smallest positive dimension. Then for any extension g of $\mu \nabla 1$,

$$g^*(U \cdot (x \delta w_{n-1}(\xi))) = g^*(U \cdot Ux) = g^*U \cdot g^*Ux = s_n \otimes Ux + 1 \otimes U \cdot (x \delta w_{n-1}(\xi))$$

(3.4)

where s_n generates $H^n(S^n; \mathbb{Z})$ and δ denotes the Bockstein-coboundary operator associated to the coefficient sequence $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/2$. So Ux and thus x via the
Thom isomorphism have order 2. Since \(x \) was chosen arbitrarily, we may assume \(\rho_2 \neq 0 \). (Here \(\rho_2 \) denotes reduction mod 2.) But \(\rho_2(s_n \otimes Ux) \neq 0 \) in (3.4), a contradiction. (Note that (3.4) uses \(\lambda(Ux) = 0 \) where \(g^*(Ux) = 1 \otimes Ux + s_n \otimes \lambda(Ux) \), but that this fact is not necessary if \(\dim x = n \).) We conclude that \(T(\xi) \) has the homology of \(S^n \). Thus \(T(\xi) \) is homotopy equivalent to \(S^n \) by the argument of [5, Corollary 5-3], since \(T(\xi) \) is a suspension for \(n = 1 \). Finally, \(n = 1, 3 \) or 7 by Proposition 2.3 since \([\mu, \mu] = 0 \).

Suppose that \(w_n(\xi) \neq 0 \). By [5, Theorem 4-1], \(\chi(T(\xi)) = 0 \). Thus \(\chi(B) = 1 \) since \(\chi(T(\xi)) = 1 + (-1)^n \chi(B) \). Let \(x \in H^i(B; \mathbb{Z}) \) denote any nontrivial class for \(i > 0 \). The calculation in (3.4) yields

\[
g^*(U \cdot (x \delta w_{n-1}(\xi))) = s_n \otimes Ux + s_n \otimes Uz \delta w_{n-1}(\xi) + 1 \otimes U \cdot (x \delta w_{n-1}(\xi))
\]

where \(Uz = \lambda(Ux) \). So \(Ux \) and thus \(x \) must have order 2. Since \(x \) was chosen arbitrarily, the reduced integral homology of \(B \) must be a vector space over \(\mathbb{Z}/2 \).

Finally, we must show that \(n \) must be 7 under the orientability hypothesis. Since \(w_n(\xi) \neq 0 \) and orientability in complex \(K \)-theory implies that \(\delta w_2(\xi) = 0 \), \(n \) must be an odd integer \(\geq 5 \).

Let

\[
S^{2n+1} \xrightarrow{h} \Sigma T(\xi) \xrightarrow{i} Y \rightarrow S^{2n+2} \rightarrow \cdots
\]

denote the Puppe sequence for the map \(h \) obtained by the Hopf construction applied to (3.2). The map in (3.2) induces the trivial morphism on \(H^{2n}(T(\xi); G) \) for any coefficient group \(G \). Consequently, the Hopf invariant of \(h \) is \(\pm 1 \) in integral cohomology (see [11]) and also in complex \(K \)-theory. That is, the free summand of \(K^0(Y) \) is generated by \(y \) and \(x \) where

\[
ch_{n+1}(i^*x) = \Sigma U \text{ in } H^{n+1}(\Sigma T(\xi); \mathbb{Q})
\]

and \(x^2 = \pm y \) in \(K^0(Y)/\text{torsion} \). Equating the coefficients of \(\psi^2 \psi^3 x = \psi^3 \psi^2 x \) yields \(n = 7 \) by the argument of [1].

References

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, NEWARK CAMPUS, NEWARK, OHIO 43055

DEPARTMENT OF MATHEMATICS, PONTIFÍCIA UNIVERSIDADE CATÓLICA, RIO DE JANEIRO, BRAZIL 22453