Special handlebody decompositions of simply connected algebraic surfaces
HTML articles powered by AMS MathViewer
- by Richard Mandelbaum
- Proc. Amer. Math. Soc. 80 (1980), 359-362
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577774-X
- PDF | Request permission
Abstract:
In this article we prove that any nonsingular complete-intersection surface admits a handlebody decomposition with no 1- and 3-handles. This generalizes results of Rudolph, Harer and Akbuluf on hypersurfaces of ${\mathbf {C}}{{\mathbf {P}}^3}$.References
- Aldo Andreotti and Theodore Frankel, The second Lefschetz theorem on hyperplane sections, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp.Β 1β20. MR 0271106 J. Harer, A. Kas and R. Kirby (to appear).
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp.Β 273β312. MR 520548
- Richard Mandelbaum, On the topology of elliptic surfaces, Studies in algebraic topology, Adv. in Math. Suppl. Stud., vol. 5, Academic Press, New York-London, 1979, pp.Β 143β166. MR 527248
- R. Mandelbaum and B. Moishezon, On the topological structure of non-singular algebraic surfaces in $CP^{3}$, Topology 15 (1976), no.Β 1, 23β40. MR 405458, DOI 10.1016/0040-9383(76)90047-1
- Richard Mandelbaum and Boris Moishezon, On the topology of simply connected algebraic surfaces, Trans. Amer. Math. Soc. 260 (1980), no.Β 1, 195β222. MR 570786, DOI 10.1090/S0002-9947-1980-0570786-6 U. Person, Thesis, Harvard Univ., Cambridge, Mass., 1975.
- Lee Rudolph, A Morse function for a surface in $CP^{3}$, Topology 14 (1975), no.Β 4, 301β303. MR 405463, DOI 10.1016/0040-9383(75)90013-0
- Andrew H. Wallace, Homology theory on algebraic varieties, International Series of Monographs on Pure and Applied Mathematics, Vol. 6, Pergamon Press, New York-London-Paris-Los Angeles, 1958. MR 0093522 B. Wajnryb, Lefschetz vanishing cycles arising from a family of plane curves, Thesis, Hebrew University, Jerusalem, Israel, 1976.
- Oscar Zariski, An introduction to the theory of algebraic surfaces, Lecture Notes in Mathematics, Vol. 83, Springer-Verlag, Berlin-New York, 1972. Second printing; Notes by James Cohn. MR 0344246
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 359-362
- MSC: Primary 57R65; Secondary 14J99
- DOI: https://doi.org/10.1090/S0002-9939-1980-0577774-X
- MathSciNet review: 577774