The stability of the cosine equation
HTML articles powered by AMS MathViewer
- by John A. Baker
- Proc. Amer. Math. Soc. 80 (1980), 411-416
- DOI: https://doi.org/10.1090/S0002-9939-1980-0580995-3
- PDF | Request permission
Abstract:
If $\delta > 0$, G is an abelian group and f is a complex-valued function defined on G such that $|f(x + y) + f(x - y) - 2f(x)f(y)| \leqslant \delta$ for all $x,y \in G$, then either $|f(x)| \leqslant (1 + \sqrt {1 + 2\delta } )/2$ for all $x \in G$ or $f(x + y) + f(x - y) = 2f(x)f(y)$ for all $x,y \in G$.References
- John Baker, J. Lawrence, and F. Zorzitto, The stability of the equation $f(x+y)=f(x)f(y)$, Proc. Amer. Math. Soc. 74 (1979), no.ย 2, 242โ246. MR 524294, DOI 10.1090/S0002-9939-1979-0524294-6
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222โ224. MR 4076, DOI 10.1073/pnas.27.4.222
- Pl. Kannappan, The functional equation $f(xy)+f(xy^{-1})=2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69โ74. MR 219936, DOI 10.1090/S0002-9939-1968-0219936-1
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. MR 0120127
- W. Harold Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1920), no.ย 7, 300โ312. MR 1560309, DOI 10.1090/S0002-9904-1920-03310-0
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 411-416
- MSC: Primary 39B70; Secondary 39B20
- DOI: https://doi.org/10.1090/S0002-9939-1980-0580995-3
- MathSciNet review: 580995