Martin’s axiom implies that de Caux’s space is countably metacompact
HTML articles powered by AMS MathViewer
- by William G. Fleissner
- Proc. Amer. Math. Soc. 80 (1980), 495-498
- DOI: https://doi.org/10.1090/S0002-9939-1980-0581013-3
- PDF | Request permission
Abstract:
De Caux defined a space $S(\mathcal {L})$ and, assuming $\clubsuit$, showed that $S(\mathcal {L})$ is normal but not countably metacompact. We assume $\mathrm {MA}_{\omega _1}$ and show that $S(\mathcal {L})$ is countably metacompact.References
- P. de Caux, A collectionwise normal weakly $\theta$-refinable Dowker space which is neither irreducible nor realcompact, Topology Proceedings 1 (1976), 67-78.
- P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489. MR 81864, DOI 10.1090/S0002-9904-1956-10036-0
- William G. Fleissner, Applications of stationary sets in topology, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 163–193. MR 564102 P. Nyikos, A topological Litmus paper strip, Notices Amer. Math. Soc. 26 (1979), A-478.
- Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 23, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Wyoming, Laramie, Wyo., August 12–16, 1974. MR 0367886, DOI 10.1090/cbms/023
- Michael L. Wage, Almost disjoint sets and Martin’s axiom, J. Symbolic Logic 44 (1979), no. 3, 313–318. MR 540662, DOI 10.2307/2273124 N. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 495-498
- MSC: Primary 54D15; Secondary 03E50, 54A35
- DOI: https://doi.org/10.1090/S0002-9939-1980-0581013-3
- MathSciNet review: 581013