CHARACTER TABLES DETERMINE
ABELIAN SYLOW 2-SUBGROUPS

ALAN R. CAMINA AND MARCEL HERZOG

Abstract. A finite group has an abelian \(S_2 \) if and only if every 2-element is 2-central.

In his survey talk at the AMS Summer Institute on Finite Group Theory, Santa Cruz, California, 1979, Walter Feit mentioned the following problem:

Can one read from the character table of a finite group if its Sylow \(p \)-subgroups are abelian?

The aim of this note is to show that a Sylow \(p \)-subgroup of \(G \) is abelian iff each \(p \)-element of \(G \) is \(p \)-central, provided that either \(p = 2 \) (Theorem 6) or \(G \) is \(p \)-solvable (Proposition 1). Thus in these two cases the answer to Feit's question is in the affirmative. The authors are not aware of finite groups satisfying one of the above-mentioned properties, but not the other. In this note we also show that the property: "a Sylow 2-subgroup of \(G \) is elementary abelian" can be read from the character table of \(G \) (Corollary 5).

In this note \(G \) denotes a finite group. Let \(p \) be a prime. The symbol \(S_p \) stands for "Sylow \(p \)-subgroup". An arbitrary Sylow \(p \)-subgroup of \(G \) will also be denoted by \(S_p \). An element \(x \) of \(G \) is called \(p \)-central if its centralizer contains an \(S_p \) of \(G \), and it is called real if its column in the character table of \(G \) is real. It is well known that \(x \) is real iff \(x \) is conjugate to \(x^{-1} \) in \(G \). Finally, let \(C_G^x(x) = \{ g \in G | x^g = x \text{ or } x^{-1} \} \). This is a subgroup of \(G \) and \(C_G^x(x) = C_G(x) \) unless \(x \) is a real element satisfying \(x^2 \neq 1 \), in which case \(|C_G^x(x): C_G(x)| = 2 \).

If \(G \) is \(p \)-solvable, we can easily prove the following proposition.

Proposition 1. Let \(G \) be a \(p \)-solvable finite group. Then \(S_p \) of \(G \) is abelian iff each \(p \)-element of \(G \) is \(p \)-central.

Proof. The "only if" part is trivial. So suppose that each \(p \)-element of \(G \) is \(p \)-central. By Theorem 3.3 in [3], \(G = O_{p^{mp}}^+(G) \). Now \(\overline{G} = G/O_p(G) \) is \(p \)-closed and still satisfies our assumption. Thus \(S_p \) of \(\overline{G} \) is abelian and hence \(S_p \) of \(G \) is abelian.

From now on, we shall deal with the prime \(p = 2 \) and \(G \) will denote a group of even order. The following remark is trivial, but basic.

Proposition 2. A nontrivial 2-central element of \(G \) is real iff it is an involution.
Proof. Every involution is real. Conversely, let \(u \neq 1 \) be a 2-central element of \(G \). Then \(C_G(u) = C_G(\bar{u}) \). Thus, if \(u \) is real, it follows that \(u \) is an involution.

Corollary 3. The 2-central involutions of \(G \) are determined by the character table of \(G \).

Corollary 4. An \(S_2 \) of \(G \) is elementary abelian iff every 2-element of \(G \) is 2-central and real.

Corollary 5. The property "an \(S_2 \) of \(G \) is elementary abelian" is determined by the character table of \(G \).

Finally, we prove

Theorem 6. Let \(G \) be a finite group. Then \(S_2 \) of \(G \) is abelian if and only if each 2-element of \(G \) is 2-central.

Proof. The "only if" part is trivial. By Proposition 1 we may assume that \(G \) is a nonsolvable group of minimal order such that each 2-element of \(G \) is 2-central, but \(S_2 \) of \(G \) is nonabelian. Clearly \(O(G) = 1 \) and \(O^2(G) = G \). If \(u \) and \(v \) are distinct involutions in \(S_2 \), then \(uv \) is a real 2-element, hence an involution by Proposition 2. Thus \(\Omega_1(S_2) \) is abelian. Moreover, it follows from our assumptions that \(F(G) = O_2(G) \) is centralized by each 2-element of \(G \), hence \(O_2(G) < Z(G) \).

Let \(E \) be the central product of all subnormal quasisimple subgroups of \(G \) and let \(F^* = O_2(G)E \). It is well known that \(C_G(F^*) = Z(F^*) \) (see [1, §10]), hence \(E \neq 1 \). Suppose that \(G \) is quasisimple. As \(\Omega_1(S_2) \) is elementary abelian every 2-element of \(G \) is 2-central, it follows by [2] that \(G \) is simple with an abelian \(S_2 \), a contradiction. So each quasisimple subnormal subgroup of \(G \) is a proper subgroup of \(G \), hence has an abelian \(S_2 \). Consequently, \(F^* = O_2(G)^*M_1 \cdot \cdots \cdot M_r \), a central product, with \(M_i \) quasisimple having abelian \(S_2 \). Thus \(F^* \) has an abelian \(S_2 \) and it suffices to show that if \(x \) is a 2-element of \(G \), then \(x \in F^* \). Suppose that \(x \not\in F^* \). Then \(x \) acts as an automorphism on \(F^* \), centralizing \(O_2(G) \) and permuting the \(M_i \). However, \(x \) centralizes an \(S_2 \) of \(F^* \), hence \(x \) normalizes each \(M_i \). Thus we may assume that \(x \) acts as an outer automorphism of even order on some \(M_i \) and hence also on the simple group \(M = M_i/Z(M_i) \) [1, Lemma 10.3]. Since \(M \) is a simple group with an abelian \(S_2 \) and with an outer automorphism of even order, it follows by [4] that \(M = PSL(2, q) \), with \(q = 2^n > 2 \) or \(q \equiv 3 \) or \(5 \) (mod 8), \(q > 5 \). If \(q = 2^n \) and the order of \(x \) as an outer automorphism is \(2^k = r \), then \(C_M(x) = PSL(2, 2^{n/r}) \) and \(x \) does not centralize an \(S_2 \) of \(M \), a contradiction. If \(q \equiv 3 \) or \(5 \) (mod 8) and \(q > 5 \), then \(Z(M_i) = 1 \), and \(x \) acts on \(M_i \) as an element of \(PGL(2, q) \), hence it does not centralize an \(S_2 \) of \(M_i \), a contradiction. The proof of Theorem 6 is complete.

Corollary 7. The property "an \(S_2 \) of \(G \) is abelian" is determined by the character table of \(G \).

Added in Proof. The authors have been informed that \(^2F_4(2) \) has just one class of 3-elements and its \(S_3 \) is nonabelian of order 27 and exponent 3.
ABELIAN SYLOW 2-SUBGROUPS

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EAST ANGLIA, NORWICH, ENGLAND

DEPARTMENT OF MATHEMATICS, TEL-AVIV UNIVERSITY, TEL-AVIV, ISRAEL