SEMILOCAL SKEW GROUP RINGS

JAN OKNIŃSKI

Abstract. Semilocal skew group rings \(R \star_{\theta} G \) are investigated. The full characterization is given in the case of algebras over a field of characteristic zero. The relationship between semilocal skew group rings and semilocal ordinary group rings \(R[G] \) is considered.

In the present paper all rings are assumed to have a unity element. Let \(R \) be a ring, \(G \) be a group and \(\theta: G \to \text{Aut}(R) \) a group homomorphism. By the skew group ring \(R \star_{\theta} G \) we shall mean \(\bigoplus_{g \in G} Rg \) with addition given componentwise and multiplication given by formula \((rg)(sh) = rs^{\theta(g)h}g \) for \(r, s \in R, g, h \in G \). If \(\theta \) is trivial then we get ordinary group ring \(R[G] \). The full characterization of semilocal group rings in the case of algebras over a field of characteristic zero is given in [2]. On the other hand, semilocal skew group rings in the case when \(\theta \) is injective and \(R \) is a field were characterized in [5].

First, we shall prove a useful characterization of semilocal rings. Let \(A \) be a ring, \(x \in A \). The following sequence of elements was used in [7]: \(f_1(x) = x, f_i(x) = f_{i-1}(x)(1 - f_{i-1}(x)) \) for \(i > 1 \). We shall say that \(A \) is \(W_n \)-ring if for any \(x \in A \) there exists \(i, 1 < i < n \), such that \(1 - f_i(x) \) is invertible in \(A \).

Lemma 1. Let \(A \) be a primitive ring. If \(A \) satisfies \(W_n \) for some \(n \), then \(A \simeq M_t(D) \) with \(t < 2^n - 2 \).

Proof. Let \(f(x) = (f_1(x) - 1)(f_2(x) - 1) \cdots (f_n(x) - 1) \). Since \(\deg f_i = 2^{i-1} \) we see that \(\deg f = 1 + 2 + \cdots + 2^{n-1} = 2^n - 1 = m \).

Let \(V \) be the faithful irreducible \(A \)-module with commuting ring \(D \). We claim \(\dim_D V < m \). If not, we may choose \(v_0, v_1, \ldots, v_{m-1} \in V \) which are \(D \)-linearly independent and put \(f(x) = x^m - \sum_{i=0}^{m-1} a_i x^i \). By the Jacobson density theorem [1], there exists \(r \in A \) with \(v_i r = v_{i+1} \) for \(i = 0, 1, \ldots, m - 2 \) and \(v_{m-1} r = \sum_{i=0}^{m-1} a_i v_i \). Thus \(v_0 r^i = v_i \) for \(i < m - 1 \) and \(v_0 r^m = v_{m-1} r = \sum_{i=0}^{m-1} a_i v_i = v_0 \sum_{i=0}^{m-1} a_i r^i \). In other words, \(v_0 f(r) = 0 \) but certainly no monic polynomial in \(r \) of degree \(< m \) can annihilate \(v_0 \). Now \(f(r) = \Pi(f_j(r) - 1) \) so if some \(f_j(r) - 1 \) is invertible, then \(v_0 \Pi_{j \neq j}(f_j(r) - 1) = 0 \), a contradiction. Thus \(f_j(r) - 1, j = 1, 2, \ldots, n \), is invertible and \(A \) does not satisfy \(W_n \), a contradiction. Hence \(\dim_D V < m \) and \(A \simeq M_t(D) \) with \(t < m - 1 = 2^n - 2 \) [1].

Lemma 2. Let \(A \) be a ring. Then \(A \) is semilocal if and only if \(A \) satisfies \(W_n \) for some \(n \) and has only finitely many maximal ideals (2-sided).

Received by the editors November 20, 1979 and, in revised form, February 1, 1980.

© 1980 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
PROOF. Necessity follows from the definition of semilocal rings and from [7].
Let A be a W_n-ring and P a primitive ideal in A. Then A/P satisfies W_n and it follows from Lemma 1 that it is simple and artinian. Thus P is maximal. If A has only finitely many maximal ideals then A is semilocal.

Now, if $B \subseteq A$ is a subring with the same unity and B is a direct summand of the left B-module A then we shall write $B|A_B$ (cf. [6, Chapter 7]).

It is well known that if $B|A_B$ then
(i) any element of B invertible in A is invertible in B,
(ii) $J(A) \cap B \subset J(B)$,
(iii) if I is any right ideal of B then $IA \cap B = I$.

Lemma 3. Let A be a ring and $B \subseteq A$ be a subring such that $B|A_B$. If A is semilocal then so is B.

Proof. We know A satisfies W_n for some n. Since any element of B invertible in A is invertible in B, it follows that B satisfies W_n. Let us suppose M_1, M_2, \ldots are infinitely many maximal ideals of B and set $I_i = M_1 \cap M_2 \cap \cdots \cap M_i$. Then we know for some j that $I_j \subseteq I_jA \subseteq J(A) + I_{j+1}A$. Further since $I_j/I_{j+1} \cong (I_j + M_{j+1})/I_{j+1} = B/I_{j+1}$ we see that there exists $x \in I_j$ with $x \equiv 1$ mod I_{j+1}. We can write $x = k + b$ with $k \in J(A), b \in I_{j+1}A$. Then $k - 1 = (x - 1) - b \in I_{j+1}A$. But $k - 1$ is invertible and so $I_{j+1}A = A$. Since $I_{j+1}A \cap B = I_{j+1}$, this is a contradiction. Thus B has only finitely maximal ideals and it is semilocal by Lemma 2.

Theorem 1. Let $R * \theta G$ be semilocal. Then
(1) $R * H$ is semilocal for every subgroup H in G,
(2) $B * \theta G$ is semilocal for every subring B in R with $B|A_B, B^{\theta(G)} = B$ where $\sigma: G \rightarrow \text{Aut}(B)$ is induced by θ.

Proof. It follows from [5] that in both cases the considered subring of $R * \theta G$ satisfies the assumptions of Lemma 3 and hence it is semilocal.

Since Wood's proof that G is torsion holds for skew group rings we then obtain

Corollary 1. If $R * \theta G$ is semilocal then R is semilocal and G is torsion.

Now, the following result follows from [5].

Corollary 2. Let G be finite. Then $R * \theta G$ is semilocal if and only if R is semilocal.

It is easy to check that the above corollaries at least hold for crossed products.

Theorem 2. Let K be a field of characteristic zero and R be a K-algebra. Then the following conditions are equivalent:
(1) $R * \theta G$ is semilocal,
(2) R is semilocal and G is finite.

Proof. (1) \Rightarrow (2). It follows from Theorem 1 that $Q[G]$ is semilocal where Q is the field of rationals. Hence G is finite by [2].

(2) \Rightarrow (1) follows from Corollary 2.
It is easy to check that in the above theorem it is enough to assume that the additive group of the ring \(R/J(R) \) is not torsion. Moreover, implication (1) \(\Rightarrow \) (2) is a direct consequence of a spectral characterization of semilocal algebras over infinite fields [3].

As we have seen, in some cases, the ring \(R \ast \theta G \) is semilocal if and only if the ordinary group ring \(R[G] \) is semilocal.

Proposition. Let \(K \) be a field. If \(K \ast \theta G \) is semilocal then so is \(K[G] \).

Proof. Let \(H = \ker \theta \). Then \(K[H] \) is semilocal by Theorem 1 and \(K \ast \theta G/H \) is semilocal since it is a homomorphic image of \(K \ast \theta G \). Here \(\theta : G/H \rightarrow \text{Aut}(K) \) is the injective homomorphism induced by \(\theta \). Thus, it follows from [5] that \(G/H \) is finite. Now, the result follows easily from the fact that \(K[G] \) has a normalizing basis over \(K[H] \) [6].

We propose the following

Conjecture. If \(R \ast \theta G \) is semilocal then so is \(R[G] \), at least in the case when \(J(R) = 0 \).

It is conjectured that \(K[G] \) is semilocal if and only if \(G \) contains a \(p \)-subgroup \(H \) of finite index with \(J(K[H]) = \omega(K[H]) \) where \(\text{char } K = p > 0 \) [6]. It was proved in some cases in [4]. However, the converse of the proposition does not hold even if \(G \) satisfies much stronger conditions.

Example. Let \(G \) be an infinite elementary abelian \(p \)-group and let \(K \) be a field of characteristic \(p \) acted upon faithfully by \(G \). Then \(K \ast G \) is not semilocal [5], but \(K[G] \) is.

References

Institute of Mathematics, University of Warsaw, 00-901 Warsaw, Poland