On bialgebras which are simple Hopf modules
HTML articles powered by AMS MathViewer
- by David E. Radford
- Proc. Amer. Math. Soc. 80 (1980), 563-568
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587928-4
- PDF | Request permission
Abstract:
This paper gives a module characterization of commutative or cocommutative Hopf algebras over a field.References
- George M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178–218. MR 506890, DOI 10.1016/0001-8708(78)90010-5
- J. A. Green, Warren D. Nichols, and Earl J. Taft, Left Hopf algebras, J. Algebra 65 (1980), no. 2, 399–411. MR 585730, DOI 10.1016/0021-8693(80)90227-6
- Robert G. Heyneman and David E. Radford, Reflexivity and coalgebras of finite type, J. Algebra 28 (1974), 215–246. MR 346001, DOI 10.1016/0021-8693(74)90035-0
- Robert G. Heyneman and Moss Eisenberg Sweedler, Affine Hopf algebras. I, J. Algebra 13 (1969), 192–241. MR 245570, DOI 10.1016/0021-8693(69)90071-4
- Warren D. Nichols, Quotients of Hopf algebras, Comm. Algebra 6 (1978), no. 17, 1789–1800. MR 508081, DOI 10.1080/00927877808822321
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Mitsuhiro Takeuchi, Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561–582. MR 292876, DOI 10.2969/jmsj/02340561
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 563-568
- MSC: Primary 16A24
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587928-4
- MathSciNet review: 587928