Trace and the regular ring of a finite $AW^{\ast }$-algebra
HTML articles powered by AMS MathViewer
- by S. K. Berberian
- Proc. Amer. Math. Soc. 80 (1980), 584-586
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587932-6
- PDF | Request permission
Abstract:
A finite $\text {AW}^*$-algebra is of type I if and only if its maximal ring of quotients has a center-valued trace. In particular, a center-valued trace need not be extendible to the maximal (or classical) ring of quotients.References
- S. K. Berberian, The regular ring of a finite $AW^*$-algebra, Ann. of Math. (2) 65 (1957), 224–240. MR 84743, DOI 10.2307/1969959
- S. K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 10 (1959), 175–182. MR 107826, DOI 10.1090/S0002-9939-1959-0107826-9
- S. K. Berberian, The regular ring of a finite Baer $^{\ast }$-ring, J. Algebra 23 (1972), 35–65. MR 308179, DOI 10.1016/0021-8693(72)90044-0 —, Baer $\ast$-rings, Die Grundlehren der math. Wissenschaften, Springer-Verlag, Berlin and New York, 1972.
- S. K. Berberian, Normal derivations in operator algebras, Tohoku Math. J. (2) 30 (1978), no. 4, 613–621. MR 516893, DOI 10.2748/tmj/1178229920 J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), 2nd ed., Gauthier-Villars, Paris, 1969.
- Izidor Hafner, The regular ring and the maximal ring of quotients of a finite Baer $^{\ast }$-ring, Michigan Math. J. 21 (1974), 153–160. MR 342552
- Joachim Lambek, Lectures on rings and modules, 2nd ed., Chelsea Publishing Co., New York, 1976. MR 0419493
- Ernest S. Pyle, The regular ring and the maximal ring of quotients of a finite Baer $^{\ast }$-ring, Trans. Amer. Math. Soc. 203 (1975), 201–213. MR 364338, DOI 10.1090/S0002-9947-1975-0364338-9 J. E. Roos, Sur l’anneau maximal de fractions des $\mathrm {AW}^*$-algèbres et des anneaux de Baer, C. R. Acad. Sci. Paris Sér. A 266 (1968), A120-A123.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 584-586
- MSC: Primary 46L05; Secondary 16A30, 46L30
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587932-6
- MathSciNet review: 587932