Nonnormal Dirichlet quotients and nonnormal Blaschke quotients
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Proc. Amer. Math. Soc. 80 (1980), 604-606
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587936-3
- PDF | Request permission
Abstract:
There exists a nonnormal meromorphic function ${f_1}/{f_2}$ in $U = \{ |z| < 1\}$, where ${f_1}$ and ${f_2}$ both are holomorphic functions with finite Dirichlet integrals in U. For each $0 < \alpha < 1$, there exists a nonnormal meromorphic function ${B_1}/{B_2}$ in U, where ${B_1}$ and ${B_2}$ both are Blaschke products with finite $\alpha$-weighted Dirichlet integrals in U.References
- F. Bagemihl and W. Seidel, Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I 280 (1960), 17. MR 0121488
- Joseph A. Cima, A nonnormal Blaschke-quotient, Pacific J. Math. 15 (1965), 767–773. MR 190344
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- V. I. Gavrilov, The theorems of Beurling, Carleson and Tsuji on exceptional sets, Mat. Sb. (N.S.) 94(136) (1974), 3–15, 159 (Russian). MR 0352467
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- David Protas, Blaschke products with derivative in $H^{p}$ and $B^{p}$, Michigan Math. J. 20 (1973), 393–396. MR 344478
- H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217–229. MR 145082, DOI 10.1007/BF01162379
- Niro Yanagihara, On a quotient of functions with finite Dirichlet integrals, J. College Arts Sci. Chiba Univ. 4 (1966), no. 4, 395. MR 218536
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 604-606
- MSC: Primary 30D45; Secondary 30D50
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587936-3
- MathSciNet review: 587936