On finitely generated and projective extensions of Banach algebras
HTML articles powered by AMS MathViewer
- by Joan Verdera
- Proc. Amer. Math. Soc. 80 (1980), 614-620
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587938-7
- PDF | Request permission
Abstract:
We show that a finitely generated projective extension B of a commutative complex unitary Banach algebra A induces an open mapping $\pi$ between the carrier spaces. We next prove that if $\pi$ is a local homeomorphism then B contains an inertial subalgebra. Finally we present a necessary and sufficient condition for B to be uniform if A is.References
- N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- L. N. Childs, On covering spaces and Galois extensions, Pacific J. Math. 37 (1971), 29–33. MR 303493
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- G. A. Heuer and J. A. Lindberg Jr., Algebraic extensions of continuous function algebras, Proc. Amer. Math. Soc. 14 (1963), 337–342. MR 159244, DOI 10.1090/S0002-9939-1963-0159244-6
- Edward C. Ingraham, Inertial subalgebras of algebras over commutative rings, Trans. Amer. Math. Soc. 124 (1966), 77–93. MR 200310, DOI 10.1090/S0002-9947-1966-0200310-1
- E. C. Ingraham, Inertial subalgebras of complete algebras, J. Algebra 15 (1970), 1–12. MR 257145, DOI 10.1016/0021-8693(70)90081-5
- John A. Lindberg Jr., Factorization of polynomials over Banach algebras, Trans. Amer. Math. Soc. 112 (1964), 356–368. MR 165381, DOI 10.1090/S0002-9947-1964-0165381-8
- John A. Lindberg Jr., Algebraic extensions of commutative Banach algebras, Pacific J. Math. 14 (1964), 559–583. MR 173166
- John A. Lindberg Jr., Integral extensions of commutative Banach algebras, Canadian J. Math. 25 (1973), 673–686. MR 331066, DOI 10.4153/CJM-1973-068-2
- Andy R. Magid, Algebraically separable extensions of Banach algebras, Michigan Math. J. 21 (1974), 137–143. MR 350430
- A. R. Magid, Galois groupoids, J. Algebra 18 (1971), 89–102. MR 272775, DOI 10.1016/0021-8693(71)90128-1
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 614-620
- MSC: Primary 46J05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587938-7
- MathSciNet review: 587938