RENORMING THE BANACH SPACE \(c_0 \)

ROBERT C. JAMES

ABSTRACT. Let \(\Phi \) be a subset of the unit sphere of \(l_1 \) and let \(X \) be \(c_0 \) renormed by using \(\Phi \) and letting \(x = y \) if \(\| x - y \| = 0 \). Two conditions are given, which together imply \(X \) is "almost isometric" to a subspace of \(c_0 \). One condition is satisfied if \(\Phi \) is the unit sphere of a linear subset of \(l_1 \). Both conditions are satisfied if \(X \) is a quotient \(c_0/W \) and \(\Phi \) is the subset of the unit sphere whose members are zero on \(W \).

A Banach space \(X \) is said to be almost isometric to a subspace of \(c_0 \) if for each positive \(\varepsilon \) there is an isomorphism \(T \) of \(X \) onto a subspace of \(c_0 \) for which \(\| T \| = 1 \) and \(\| T^{-1} \| < 1 + \varepsilon \). It will be proved that, if \(\Phi \) is a \(Q \)-subset of \(l_1 \) as defined below, then \(X \) is almost isometric to a subspace of \(c_0 \) if \(X \) is obtained from \(c_0 \) by using \(\Phi \) to determine a new norm \(\| \cdot \| \) and then letting \(x = y \) if \(\| x - y \| = 0 \).

For each positive integer \(n \), let \(P_n \) denote the natural projection onto the span of the first \(n \) members of the usual basis of \(l_1 \). If \(\Phi \) is a subset of the unit sphere of \(l_1 \), let \(\Phi_n \) denote the set of those members of \(\Phi \) whose first \(n - 1 \) components are 0. A subspace of a Banach space will be a linear subset, not necessarily closed.

DEFINITION. A \(Q \)-subset of \(l_1 \) is a subset \(\Phi \) of the unit sphere of \(l_1 \) that has the properties:

A) If \(\theta + h_i \in \Phi \) for each \(i \), \(\theta \neq 0 \), \(\| h_i \| \) is bounded away from 0, and \(\lim_{n \to \infty} \| P_n h_i \| = 0 \) for each \(n \), then \(\theta/\| \theta \| \in \Phi \) and \(\text{dist}(h_i/\| h_i \|, \Phi) \to 0 \).

B) For each \(n \) and \(\tau > 0 \), there is a \(\sigma > 0 \) and a finite subset \(H \) of \(\Phi_n \) such that, if \(\varphi \in \Phi_n \) and \(|\varphi(n)| < \sigma \), then there is a \(g \) in \(H \cup \Phi_{n+1} \) such that \(\| \varphi - g \| < \tau \).

It is very easy to prove and it has long been known that every separable Banach space is a quotient space of \(l_1 \) [4, p. 108]. The behavior of \(c_0 \) is quite different. In fact, Alspach showed recently that each quotient space of \(c_0 \) is almost isometric to a subspace of \(c_0 \) [1]. It had been known for some time that each quotient space of \(c_0 \) is isomorphic to a subspace of \(c_0 \) ([3, p. 53] or [4, p. 107]). Rather than studying quotient spaces of \(c_0 \), the following theorem and its proof demonstrate that it is more natural, much easier, and simpler to study renormings of \(c_0 \) by subsets of the unit sphere of \(l_1 \).

It is easy to show that, given any separable Banach space \(X \), there is a subset \(\Phi \) of the unit sphere of \(l_1 \) which, when used to renorm \(c_0 \), produces a new space that contains a subset isometric to a dense linear subset of \(X \). However, we will prove...
that \(Q\)-subsets of \(l_1\) can only generate spaces which are almost isometric to subspaces of \(c_0\).

For example, let \(\Phi = \{ \frac{1}{2}e_n - \frac{1}{2}e_{n+1}; n > 1 \}\), where \(\{e_n\}\) is the natural basis of \(l_1\).
Then \(\Phi\) is a \(Q\)-subset of \(l_1\). If \(X\) is the space obtained by using \(\Phi\) to renorm \(c_0\), then the identity map \(I\) of \(c_0\) onto \(X\) has only 0 in its kernel. Also,

\[
\|\|(1, 1 - 1/k, 1 - 2/k, \ldots, 1 - (k - 1)/k, 0, 0, \ldots)\|\| = 1/(2k),
\]

so \(I^{-1}\) is not continuous. Thus \(X\) is not complete and is not a quotient of \(c_0\), but \(\{x_n\} \rightarrow \{\frac{1}{2}(x_1 - x_2), \frac{1}{2}(x_2 - x_3), \ldots\}\) defines an isometry of \(X\) onto a subspace of \(c_0\).

Now let \(\Phi = \{ \frac{1}{2}e_1 - \frac{1}{2}e_n; n > 1 \}\). Then \(\Phi\) has property (B) and does not have property (A). The space \(X\) obtained by renorming \(c_0\) is isometric to \(c\), with \(\{x_i; i > 1\} \leftrightarrow \{\frac{1}{2}(x_1 - x_i); i > 1\}\).

Let us say that \(\Phi\) is prelinear if \(\Phi\) is the unit sphere of a subspace of \(l_1\). If \(\Phi\) is prelinear, then \(\Phi\) has property (B). In fact, if \(\Phi_{n+1} \neq \Phi_n\), there is an \(f\) with \(f/\|f\| \in \Phi_n, f(n) > 0\), and \(\|f\| < \frac{1}{2}\tau/(1 + \tau)\). We then let \(H = \emptyset\) and \(\sigma = f(n)\). If \(\varphi(n) < \sigma\), let

\[
g = \frac{\varphi - \varphi(n)/\sigma}{\|\varphi - \varphi(n)/\sigma\|}.
\]

However, \(\Phi\) can be prelinear and not have property (A). To see this, let \(\Phi\) be the subset of the unit sphere of \(l_1\) for which \(\Sigma_i^\infty f_i = 0\) if \(\{f_i\} \in \Phi\). Then \(\frac{1}{2}e_1 - \frac{1}{2}e_n \in \Phi\) for all \(n > 1\), but \(e_1 \notin \Phi\).

A quotient \(c_0/W\) can be regarded as obtained by renorming \(c_0\) using as \(\Phi\) the intersection of \(W^\perp\) and the unit sphere of \(l_1\). Such a \(\Phi\) clearly has property (A) and is a \(Q\)-subset of \(l_1\). Thus it is a corollary of the following theorem that quotient spaces of \(c_0\) are almost isometric to subspaces of \(c_0\). It should be noted that if a \(Q\)-subset \(\Phi\) of \(l_1\) is prelinear, then it follows from (A) that \(\text{cl[lin(\Phi)]}\) is bw*-closed, which implies \(\text{cl[lin(\Phi)]}\) is w*-closed [2, Theorem 5, p. 50] and therefore that there is a subspace \(W\) of \(c_0\) for which \(W^\perp = \text{cl[lin(\Phi)]}\).

Theorem. Let \(\Phi\) be a \(Q\)-subset of \(l_1\). Then \(X\) is almost isometric to a subspace of \(c_0\) if \(X\) is obtained by renorming \(c_0\) with

\[
\|x\| = \sup\{|(\varphi, x)|; \varphi \in \Phi\}
\]

and \(x = y\) if \(\|x - y\| = 0\).

Proof. It is sufficient to show that, for each \(\varepsilon > 0\), there exists a sequence \(\{\varphi_i; i > 1\}\) in \(\Phi\) such that \(w^*\)-lim \(\varphi_i = 0\) and

\[
\sup\{|(\varphi_i, x)|; i > 1\} > (1 + \varepsilon)^{-1}\|x\|\quad \text{if} \quad x \in X,
\]

since then \(\|T\| > 1\) and \(\|T^{-1}\| < 1 + \varepsilon\) if \(T\) is defined by \((Tx)(i) = \varphi_i(x)\) for \(i > 1\). Suppose \(\Delta_n\) is a positive number and \(F_n\) is a finite subset of \(\Phi\) such that, if \(x \in X\), then

\[
\sup\{|(f, x)|; f \in F_n \cup \Phi_n\} > (1 - \Delta_n)\|x\|.
\]

If \(n = 1\), this is satisfied with \(F_1 = \emptyset\) and \(\Delta_1\) any positive number. We will show that if \(\Delta_{n+1} > \Delta_n\), then there is a finite subset \(G_n\) of \(\Phi_n\) such that, if \(x \in X\), then
\[\sup \{|(f, x)|; f \in F_n \cup G_n \cup \Phi_{n+1}^r \} > (1 - \Delta_n - \tau) ||x||. \]

Once this has been done, the existence of \(\{\varphi_i\} \) follows by choosing \(\Delta_n \) uniformly less than \(1 - (1 + \epsilon)^{-1} \), and then letting \(F_{n+1} = F_n \cup G_n \) and \(\{\varphi_i\} = \cup F_n \), arranged in an order so that each member of \(F_n \) precedes each member of \(G_n = F_{n+1} - F_n \).

Suppose (i) is satisfied, but (ii) is not satisfied, whatever finite subset \(G_n \) of \(\Phi_n \) is used. This implies that, if \(\tau = \frac{1}{2}(\Delta_{n+1} - \Delta_n) \) and \(\sigma \) is as described in (B), then for each \(k > 1 \) there is an \(x_k \in X \) such that \(||x_k|| = 1 \) and

\[\sup \{|(f, x)|; f \in F_n \cup G^r \cup \Phi_{n+1}^r \} < (1 - \Delta_n - \tau) ||x|| \]

is satisfied if \(x = x_k \), where \(G^r \) is the set of all \(\varphi \in \Phi_n \) with \(||\varphi - P_{n+k}\varphi|| < \frac{1}{3} \tau \), and \(\Phi_{n+1}^r \) is the set of all \(\varphi \in \Phi_n \) with \(||\varphi(n)|| < \sigma \). To see this, observe first that, if \(G \) is a finite subset of \(G^r \) for which \(P_{n+k}G \) is \(\frac{1}{3} \tau \)-dense in \(P_{n+k}G^r \), then \(G \) is \(\tau \)-dense in \(G^r \). Then the left member of (iii) is not decreased by more than \(\tau ||x|| \) if \(G^r \) is replaced by \(G \). Now observe that, for \(H \) as given by (B), \(\Phi_{n+1}^r \) can be replaced by \(H \cup \Phi_{n+1}^r \) without decreasing the left member of (iii) by more than \(\tau ||x|| \) for any \(x \). It now follows that \(x_k \) exists, since otherwise (ii) would be satisfied with \(G_n = G \cup H \). This \(x_k \) has the property

if \(\varphi \in \Phi_n \) and \(|(\varphi, x_k)| > 1 - \Delta_n - \tau \), then \(\varphi \not\in F_n \), \(|\varphi(n)| > \sigma \),

and \(||\varphi - P_{n+k}\varphi|| > \frac{1}{3} \tau \).

Because of (i) and the fact that \(x_k \) satisfies (iii), there is \(g_k \in \Phi_n \) for which \(|(g_k, x_k)| > 1 - \Delta_n \). It then follows from (1) that

\[|g_k(n)| > \sigma \quad \text{and} \quad ||g_k - P_{n+k}g_k|| > \frac{1}{3} \tau. \]

Now choose a subsequence of \(\{g_k\} \) which converges component-wise. Let \(\theta \) be this component-wise limit, denote the subsequence by \(\{\theta + h_k\} \), and let the corresponding members of \(\{x_k\} \) be \(\{\xi_k\} \). Then (1) is satisfied with \(x_k \) replaced by \(\xi_k \). Also,

\[|(\theta + h_k, \xi_k)| > 1 - \Delta_n. \]

It follows from (2) and the choice of \(\{\theta + h_k\} \) that, for each positive integer \(\lambda \),

\[|\theta(n)| > \sigma, \quad \lim_{k \to \infty} ||h_k|| > \frac{1}{3} \tau, \quad \text{and} \quad \lim_{k \to \infty} ||P_\lambda h_k|| = 0. \]

It follows from (A) that \(\theta/||\theta|| \in \Phi_n \) and \(\text{dist}(h_k/||h_k||, \Phi_n) \to 0 \). Choose \(\lambda > n \) so that \(||\theta - P_\lambda \theta|| < \frac{1}{6} \tau ||\theta|| \). Then it follows from (1) that

\[|(\theta, \xi_k)/||\theta||| < 1 - \Delta_n - \tau \quad \text{if} \quad n + k > \lambda. \]

Now choose \(k \) so that \(n + k > \lambda \), \(|h_k(n)| < \frac{1}{2} \sigma ||h_k|| \), \(||P_\lambda h_k|| < \frac{1}{6} \tau \), and \(\text{dist}(h_k/||h_k||, \Phi_n) \) is small enough that it follows from \(|h_k(n)| < \frac{1}{2} \sigma ||h_k|| \) and (1) that

\[|(h_k, \xi_k)/||h_k||| < 1 - \Delta_n - \tau + \frac{1}{2} \tau/||h_k||. \]

Recall that \(||\theta + h_k|| = 1 \) and observe that the conditions on \(\lambda \) and \(k \) imply

\[||\theta|| + ||h_k|| < ||\theta + h_k|| + 2||\theta - P_\lambda \theta|| + 2||P_\lambda h_k|| < 1 + \frac{1}{2} \tau. \]
Now use this and (5) and (6) to obtain a contradiction of (3):

\[
|\langle \theta + h_k, \xi_k \rangle| < \|\theta\| + \|h_k\| - (\|\theta\| + \|h_k\|)(\Delta_n + \tau) + \frac{1}{2}\tau
\]

\[
< 1 + \frac{1}{2}\tau - (\Delta_n + \tau) + \frac{1}{2}\tau = 1 - \Delta_n.
\]

REFERENCES

DEPARTMENT OF MATHEMATICS, CLAREMONT GRADUATE SCHOOL, CLAREMONT, CALIFORNIA 91711