Renorming the Banach space $c_{0}$
HTML articles powered by AMS MathViewer
- by Robert C. James
- Proc. Amer. Math. Soc. 80 (1980), 631-634
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587941-7
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 83 (1981), 442.
Abstract:
Let $\Phi$ be a subset of the unit sphere of ${l_1}$ and let X be ${c_0}$, renormed by using $\Phi$ and letting $x = y$ if $|||x - y||| = 0$. Two conditions are given, which together imply X is βalmost isometricβ to a subspace of ${c_0}$. One condition is satisfied if $\Phi$ is the unit sphere of a linear subset of ${l_1}$. Both conditions are satisfied if X is a quotient ${c_0}/W$ and $\Phi$ is the subset of the unit sphere whose members are zero on W.References
- Dale E. Alspach, Quotients of $c_{0}$ are almost isometric to subspaces of $c_{0}$, Proc. Amer. Math. Soc. 76 (1979), no.Β 2, 285β288. MR 537089, DOI 10.1090/S0002-9939-1979-0537089-4
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- W. B. Johnson and M. Zippin, Subspaces and quotient spaces of $(\sum G_{n})_{l_{p}}$ and $(\sum G_{n})_{c_{0}}$, Israel J. Math. 17 (1974), 50β55. MR 358296, DOI 10.1007/BF02756824
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 631-634
- MSC: Primary 46B20; Secondary 46A45
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587941-7
- MathSciNet review: 587941