Best approximation in certain Douglas algebras
HTML articles powered by AMS MathViewer
- by Rahman Younis
- Proc. Amer. Math. Soc. 80 (1980), 639-642
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587943-0
- PDF | Request permission
Abstract:
The main result of this paper is that if $f \in {L^\infty }$ and S is a weak peak set for ${H^\infty }$, then the distance from f to the Douglas algebra $\{ f \in {L^\infty }:f{|_S} \in {H^\infty }{|_S}\}$ is attained.References
- Erik M. Alfsen and Edward G. Effros, Structure in real Banach spaces. I, II, Ann. of Math. (2) 96 (1972), 98–128; ibid. (2) 96 (1972), 129–173. MR 352946, DOI 10.2307/1970895 S. Axler, Subalgebras of ${L^\infty }$, Thesis, University of California at Berkeley, 1975.
- Sheldon Axler, I. David Berg, Nicholas Jewell, and Allen Shields, Approximation by compact operators and the space $H^{\infty }+C$, Ann. of Math. (2) 109 (1979), no. 3, 601–612. MR 534765, DOI 10.2307/1971228
- Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- David G. Cantor and R. R. Phelps, An elementary interpolation theorem, Proc. Amer. Math. Soc. 16 (1965), 523–525. MR 176083, DOI 10.1090/S0002-9939-1965-0176083-2
- S. Y. Chang and D. E. Marshall, Some algebras of bounded analytic functions containing the disk algebra, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977, pp. 12–20. MR 0463925
- Kevin F. Clancey and John A. Gosselin, On the local theory of Toeplitz operators, Illinois J. Math. 22 (1978), no. 3, 449–458. MR 482346
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Irving Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415–435. MR 173957, DOI 10.1090/S0002-9947-1962-0173957-5
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR 0367121
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Richard Holmes, Bruce Scranton, and Joseph Ward, Approximation from the space of compact operators and other $M$-ideals, Duke Math. J. 42 (1975), 259–269. MR 394301
- Daniel H. Luecking, The compact Hankel operators form an $M$-ideal in the space of Hankel operators, Proc. Amer. Math. Soc. 79 (1980), no. 2, 222–224. MR 565343, DOI 10.1090/S0002-9939-1980-0565343-7
- Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19–23, 1978. MR 521811
- Rahman Younis, Interpolation by a finite Blaschke product, Proc. Amer. Math. Soc. 78 (1980), no. 3, 451–452. MR 553394, DOI 10.1090/S0002-9939-1980-0553394-8
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 639-642
- MSC: Primary 46E15; Secondary 41A50, 46J15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587943-0
- MathSciNet review: 587943