Existence theorems on unbounded sets in Banach spaces
HTML articles powered by AMS MathViewer
- by Norimichi Hirano and Wataru Takahashi
- Proc. Amer. Math. Soc. 80 (1980), 647-650
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587945-4
- PDF | Request permission
Abstract:
In this paper, we give a necessary and sufficient condition under which a variational inequality defined on unbounded sets in a Banach space has a solution. Furthermore, we establish a necessary and sufficient condition under which the minimax equality on unbounded sets is true.References
- M. S. Bazaraa, J. J. Goode, and M. Z. Nashed, A nonlinear complementarity problem in mathematical programming in Banach space, Proc. Amer. Math. Soc. 35 (1972), 165–170. MR 300163, DOI 10.1090/S0002-9939-1972-0300163-5
- V. Barbu and Th. Precupanu, Convexitate şi optimizare în spaţii Banach, Editura Academiei Republicii Socialiste România, Bucharest, 1975 (Romanian). With an English summary and table of contents; Analiză Modernă şi Aplicaţii. [Modern Analysis and Applications]. MR 0461071
- Haïm Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 1, 115–175 (French). MR 270222
- S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971), 161–168. MR 321540, DOI 10.1007/BF00932464
- Jorge J. Moré, Coercivity conditions in nonlinear complementarity problems, SIAM Rev. 16 (1974), 1–16. MR 336496, DOI 10.1137/1016001
- Wataru Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), no. 1, 168–181. MR 399979, DOI 10.2969/jmsj/02810168
- J. v. Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), no. 1, 295–320 (German). MR 1512486, DOI 10.1007/BF01448847
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 647-650
- MSC: Primary 47H05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587945-4
- MathSciNet review: 587945