On operator ranges
HTML articles powered by AMS MathViewer
- by Bhushan L. Wadhwa
- Proc. Amer. Math. Soc. 80 (1980), 653-654
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587947-8
- PDF | Request permission
Abstract:
If f is any vector-valued bounded function defined on open set D of the complex plane, and T is any bounded linear operator on a Hilbert space such that ${\sigma _R}({T^ \ast })$ is empty and if ${(T - zI)^2}f(z) = x$ for all z in D then f is analytic.References
- Kevin F. Clancey, On the local spectra of seminormal operators, Proc. Amer. Math. Soc. 72 (1978), no. 3, 473–479. MR 509237, DOI 10.1090/S0002-9939-1978-0509237-2
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. MR 203464, DOI 10.1090/S0002-9939-1966-0203464-1
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III: Spectral operators, Pure and Applied Mathematics, Vol. VII, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1971. With the assistance of William G. Bade and Robert G. Bartle. MR 0412888
- B. E. Johnson, Continuity of linear operators commuting with continuous linear operators, Trans. Amer. Math. Soc. 128 (1967), 88–102. MR 213894, DOI 10.1090/S0002-9947-1967-0213894-5
- C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33–36. MR 276810
- C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math. 57 (1975), no. 2, 531–538. MR 380493
- M. Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), no. 1, 70–75. MR 448140
- J. G. Stampfli, Analytic extensions and spectral localization, J. Math. Mech. 16 (1966), 287–296. MR 0196500, DOI 10.1512/iumj.1967.16.16019
- Joseph G. Stampfli and Bhushan L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359–365. MR 410448, DOI 10.1512/iumj.1976.25.25031
- Joseph G. Stampfli and Bhushan L. Wadhwa, On dominant operators, Monatsh. Math. 84 (1977), no. 2, 143–153. MR 458225, DOI 10.1007/BF01579599
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 653-654
- MSC: Primary 47A05; Secondary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587947-8
- MathSciNet review: 587947