A NOTE ON ANALYTIC SETS

JOHN R. STEEL

ABSTRACT. We give "effective" proofs of two recent theorems on analytic sets of reals, together with counterexamples to their natural extensions.

In this note we give effective ("lightface") proofs of two recent theorems about analytic (Σ^1_1) sets of reals due to C. Dellacherie, together with counterexamples to their natural extensions. All our proofs are quite easy modulo the basics of the effective theory.

In the case $k = 2$, the following is just the Reduction Theorem for Π^1_1 sets of reals.

Theorem 1 (Dellacherie [1]). Let $\{A_i|i < k\}$ be a finite family of Π^1_1 subsets of $^{\omega}\omega$. Then there are Π^1_1 sets B_i, $i < k$, so that

(i) $B_i \subseteq A_i$ for $i < k$;
(ii) $B_i \cup B_j = A_i \cup A_j$ for $i \neq j$;
(iii) $\bigcap_{i < k} B_i = \emptyset$.

Proof. Let $R(i, x)$ iff $x \in A_i$. Let $\varphi: R \to \omega_1$ be a Π^1_1 norm on R (cf. [3]) and put $\varphi(i, x) = \omega_1$ if $\neg R(i, x)$. Let

$x \in B_i \iff R(i, x) \land \exists j < k(\varphi(i, x) < \varphi(j, x) \lor (\varphi(i, x) = \varphi(j, x) \land i < j)).$

Then B_i is Π^1_1. Note that if $\exists i < k(x \notin A_i)$ then $\forall i < k(x \in A_i \iff x \in B_i)$, while if $\forall i < k(x \in A_i)$ then $x \notin B_i$ for exactly one $i < k$. Thus the B_i are as desired. □

Dellacherie asked whether Theorem 1 holds for countable families. A. S. Kechris and the author found a counterexample, which L. Harrington simplified considerably to the following. (Apparently, Kunen had earlier found a counterexample using forcing.)

Counterexample 1. Let

$x \in A_0 \iff$ codes an ω-sequence $\{C^x_n|n < \omega\}$ of Π^1_1 subsets of $^{\omega}\omega$;

$x \in A_{n+1} \iff x A_0 \land x \in C^x_n$.

Suppose $\{B_n|n < \omega\}$ were an ω-sequence of Π^1_1 sets reducing $\{A_n|n < \omega\}$ in the sense of Theorem 1. Let x code $\{B_n|n < \omega\}$; i.e. let $B_n = C^x_n$ for $n < \omega$. By (iii) let n be least so that $x \notin B_n$. Then $x \in A_m$ for $m < n$ by the definition of $\{A_n|n < \omega\}$. So $x \in B_{n+1}$ by (ii). But then $x \in A_{n+1}$, so $x \in C^x_n = B_n$, a contradiction. □

Received by the editors April 14, 1979.

Research supported in part by NSF Grant No. MCS 78-02989.
If \(R \subseteq A \times B \) and \(x \in A \), we let \(R_x = \{ y \in B | (x, y) \in R \} \). \(R_x \) is called a section of \(R \).

Theorem 2 (Dellacherie [1]). Let \(R \subseteq \omega \times \omega \) be \(\Sigma^1_1 \), and \(R_x \) compact for each \(x \in \omega \). Then there is a \(\Sigma^1_1 \) set \(S \subseteq \omega \times \omega \) so that
(a) \(\forall x (S_x \text{ is compact and nonempty}) \);
(b) \(\forall x (R_x \neq \emptyset \Rightarrow R_x = S_x) \).

Proof. Let \(R \) be as above. Define \(R^* \) by
\[
R^*(x, s) \iff s \in \omega^{<\omega} \land \exists y (s \subseteq y \land R(x, y)).
\]
Then \(R^* \) is \(\Sigma^1_1 \), and \(R^*_x \) is a tree on \(\omega \) for each \(x \). Since \(R_x \) is closed, \(R_x \) is just the set of branches of \(R^*_x \); since \(R_x \) is compact, \(R^*_x \) is finitely branching. An easy boundedness argument yields a \(\Delta^1_1 \) set \(T^* \supseteq R^* \) so that \(T^*_x \) is an infinite, finitely branching tree on \(\omega \) for each \(x \).

Let \(\varphi \) be a \(\Pi^1_1 \) norm on \((\omega \times \omega^{<\omega}) - R^* \) and define
\[
\psi(x, s) = \min \{ \varphi(x, t) | t \subseteq s \}.
\]
Then \(\psi \) is a \(\Pi^1_1 \) norm on \((\omega \times \omega^{<\omega}) - R^* \), and \(\{ s | \psi(x, s) > \alpha \} \) is a tree for each \(x, \alpha \). Let
\[
S^*(x, s) \iff T^*(x, s) \land (R^*(x, s) \lor T^*_x - \{ t | \psi(x, t) < \psi(x, s) \}) \text{ is finite}.
\]
\(S^*_x \) is a finitely branching tree for each \(x \), and \(S^*_x = R^*_x \) if \(R^*_x \) is finite (i.e., if \(R_x \neq \emptyset \)). If \(R^*_x \) is finite, let \(\alpha \) be least so that \(T^*_x - \{ t | \psi(x, t) < \alpha \} \) is finite. Since \(T^*_x \) is finitely branching, \(\alpha = \beta + 1 \) for some \(\beta \). But then \(\psi(x, s) = \beta \) for infinitely many \(s \), and \(\psi(x, s) = \beta \Rightarrow S^*(x, s) \) by the definition of \(S^* \). Thus \(S^*_x \) is an infinite finitely branching tree for each \(x \). Let \(S(x, y) \Rightarrow y \) is a branch of \(S^*_x \). \(\square \)

Dellacherie asked whether Theorem 2 holds with “\(\sigma \)-compact” replacing “compact”.

Counterexample 2. Let \(\{ A_n | n < \omega \} \) be as defined in Counterexample 1. Let
\[
R(x, y) \iff \exists n (\forall i (y(i) = n) \land x \in A_n).
\]
Then \(R \) is \(\Sigma^1_1 \) and \(R_x \) is countable, hence \(\sigma \)-compact, for each \(x \). The argument of Counterexample 1 shows that if \(S \subseteq \omega \times \omega \) is \(\Sigma^1_1 \) and \(\forall x (R_x \neq \emptyset \Rightarrow R_x = S_x) \), then \(\exists x (R_x = \emptyset \land S_x = \emptyset) \). \(\square \)

The following is an old theorem.

Theorem 3 (Lusin [2]). Let \(R \subseteq \omega \times \omega \) be \(\Sigma^1_1 \) and \(R_x \) countable for each \(x \). Then there are \(\Sigma^1_1 \) sets \(S_n, n < \omega \), so that
(i) \(R = \bigcup \{ S_n \} \);
(ii) for each \(x, n, (S_n)_x \), has \(< 1 \) element.

Dellacherie asked whether Theorem 3 holds with “\(\sigma \)-compact” replacing “countable” and “is compact” replacing “has \(< 1 \) element”.

Counterexample 3. For \(x \in \omega \), let \(W^x = \{ e \in \omega | e \text{ is the Gödel number of a well-order of } \omega \text{ recursive in } x \} \). The relation “\(y = W^x \)” is \(\Pi^1_1 \), as is “\(y = W^* \)”. Define now
\[
R(x, y) \iff y \in \omega^2 \land y \neq W^*.
\]
Then R is Σ^1_1, and R_x is σ-compact (in fact, open relative to \mathcal{U}^ω) for each x. Suppose $\{S_n|n<\omega\}$ were a family of Σ^1_1 sets as in the proposed extension of Theorem 3. Say that "$x \in S_n$" is a $\Sigma^1_1(z)$ relation of x, n. Let $S^*_n = \{s \in \omega^{<\omega}|\exists y(s \subseteq y \land y \in S_n)\}$. The sequence $\langle S^*_n|n<\omega\rangle$ is recursive in W^ω. But W^{W^ω} is the unique $y \in \mathcal{U}^\omega$ so that y is not a branch of any of the trees S^*_n. Thus W^{W^ω} is Δ^1_1 in W^ω, a contradiction. □

Counterexample 3 raises the following question: let $R \subseteq^\omega \omega \times \mathcal{U}^\omega$ be Σ^1_1 with σ-compact sections. Must there be $S \subseteq R$, Σ^1_1 with compact sections, so that $R_x \neq \emptyset \Rightarrow S_x \neq \emptyset$? Clearly this is one instance of a family of problems generalizing the uniformization problem. If R, $S \subseteq^\omega \omega \times \omega$ we say S almost uniformizes R iff $S \subseteq R$ and $\forall x(R_x \neq \emptyset \Rightarrow S_x \neq \emptyset)$. Notice that if R is Σ^1_1, then there is a Σ^1_1 S with Borel sections which almost uniformizes R; let $S_{xy} \iff (R_{xy} \land \omega^x = \omega^x)$, where ω^x is the least ordinal not recursive in z. On the other hand, L. Harrington has found a Σ^1_1 relation R such that, for every countable α, R cannot be almost uniformized by a Σ^1_1 relation with Π^0_α sections. We sketch his example for those familiar with [4]. Let P be the forcing notion of §2 of [4]. Let $R(x, T)$ iff T is P-generic over $L_{\omega_1^x}[x]$ with respect to Σ sentences. Then R is Σ^1_1, since $R(x, T)$ iff $\omega^x = \omega^xT$ and T is P-generic over $L_{\omega_1^x}[x]$ with respect to ranked sentences. Lemma 1 of [4] implies that R cannot be almost uniformized by a Σ^1_1 relation with sections of bounded Borel class.

References

Department of Mathematics, University of California, Los Angeles, California 90024