Linear vector fields on $\tilde {G}_k(\mathbf {R}^n)$
HTML articles powered by AMS MathViewer
- by Maria Luiza Leite and Isabel Dotti de Miatello
- Proc. Amer. Math. Soc. 80 (1980), 673-677
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587953-3
- PDF | Request permission
Abstract:
We determine the maximal number of linearly independent vector fields on the grassmannian of oriented k-subspaces of ${R^n}$, which are induced by linear transformations of ${\Lambda ^k}({R^n})$.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann. 88 (1922), no. 1-2, 1–25 (German). MR 1512117, DOI 10.1007/BF01448439
- Hideyuki Iwamoto, On integral invariants and Betti numbers of symmetric Riemannian manifolds. I, J. Math. Soc. Japan 1 (1949), 91–110. MR 32993, DOI 10.2969/jmsj/00120091 C. Rader, The Betti numbers of Grassmannians, Atas do XIII Colóquio Brasileiro de Matemática, Pocos de Caldas, 1979. J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 1-14.
- Emery Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc. 75 (1969), 643–683. MR 242189, DOI 10.1090/S0002-9904-1969-12240-8
- Joseph A. Wolf, Spaces of constant curvature, 5th ed., Publish or Perish, Inc., Houston, TX, 1984. MR 928600
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 673-677
- MSC: Primary 57R25
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587953-3
- MathSciNet review: 587953