A Peano continuum homeomorphic to its own square but not to its countable infinite product
HTML articles powered by AMS MathViewer
- by Jan van Mill
- Proc. Amer. Math. Soc. 80 (1980), 703-705
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587960-0
- PDF | Request permission
Abstract:
We give an example of a Peano continuum X with ${X^2} \approx X$ but $X^\infty \approx X$.References
- E. K. van Douwen, Prime mappings, number of factors, and binary operations, Dissertationes Math. (to appear).
- S. Fajtlowicz, W. Holsztyński, J. Myciełski, and B. Węglorz, On powers of bases in some compact algebras, Colloq. Math. 19 (1968), 43–46. MR 224528, DOI 10.4064/cm-19-1-43-46
- Joseph L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629–632. MR 375328, DOI 10.1090/S0002-9904-1975-13768-2 H. Toruńczyk, Characterization of infinite-dimensional manifolds (Proc. Geom. Topol. Conf., Warsaw, 1978) (to appear).
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 703-705
- MSC: Primary 54F20; Secondary 54B10, 54G15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0587960-0
- MathSciNet review: 587960