A new proof of a result of Levitzki
HTML articles powered by AMS MathViewer
- by Abraham A. Klein
- Proc. Amer. Math. Soc. 81 (1981), 8
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589126-8
- PDF | Request permission
Abstract:
A very short proof of the result which states that a nil ring of bounded index has a nonzero nilpotent ideal is given and it is shown that the same method of proof yields a more general result.References
- M. Chacron, Algebraic $\phi$-rings extensions of bounded index, J. Algebra 44 (1977), no. 2, 370–388. MR 427378, DOI 10.1016/0021-8693(77)90188-0
- B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull. 21 (1978), no. 2, 241–242. MR 491793, DOI 10.4153/CMB-1978-040-0
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 8
- MSC: Primary 16A22
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589126-8
- MathSciNet review: 589126