Rationally varying polarizing subalgebras in nilpotent Lie algebras
HTML articles powered by AMS MathViewer
- by Lawrence Corwin and Frederick P. Greenleaf
- Proc. Amer. Math. Soc. 81 (1981), 27-32
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589131-1
- PDF | Request permission
Abstract:
Let $\mathfrak {N}$ be a nilpotent Lie algebra, with (vector space) dual ${\mathfrak {N}^{*}}$. We construct a map $l \mapsto {\mathfrak {M}_l}$ from a Zariski-open subset of ${\mathfrak {N}^{*}}$ to the set of subalgebras of $\mathfrak {N}$ such that ${\mathfrak {M}_l}$ varies rationally with $l$, ${\mathfrak {M}_l}$ is polarizing for $l$, $({\text {Ad}}x){\mathfrak {M}_l} = {\mathfrak {M}_{l’}}(l’ = {\text {A}}{{\text {d}}^ {*} }x \cdot l)$ for all $x \in N$, and $un{k_\infty }(l) \subseteq {\mathfrak {M}_l} \subseteq un{k_\infty }(l)$, where $un{k_\infty }(l)$ and $un{k_\infty }(l)$ are the canonical subalgebras introduced by R. Penney.References
- Ian D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. (4) 6 (1973), 407–411. MR 352326
- L. Corwin and F. P. Greenleaf, Fourier transforms of smooth functions on certain nilpotent Lie groups, J. Functional Analysis 37 (1980), no. 2, 203–217. MR 578932, DOI 10.1016/0022-1236(80)90041-5
- Lawrence Corwin, Frederick P. Greenleaf, and Richard Penney, A canonical formula for the distribution kernels of primary projections in $L^{2}$ of a nilmanifold, Comm. Pure Appl. Math. 30 (1977), no. 3, 355–372. MR 430157, DOI 10.1002/cpa.3160300308
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Richard C. Penney, Canonical objects in Kirillov theory on nilpotent Lie groups, Proc. Amer. Math. Soc. 66 (1977), no. 1, 175–178. MR 453922, DOI 10.1090/S0002-9939-1977-0453922-7
- L. Pukánszky, Leçons sur les représentations des groupes, Monographies de la Société Mathématique de France, No. 2, Dunod, Paris, 1967 (French). MR 0217220
- Charles Rockland, Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1–52. MR 486314, DOI 10.1090/S0002-9947-1978-0486314-0 M. Vergne, Construction de sous-algèbres subordonnées à un élément du dual d’une algèbre de Lie résoluble, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A173-A175. —, Construction de sous-algèbres subordonnées à un élément du dual d’une algèbre de Lie résoluble, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A704-A707.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 27-32
- MSC: Primary 17B30
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589131-1
- MathSciNet review: 589131