ON COMPACT MULTIPLIERS OF BANACH ALGEBRAS

HERBERT KAMOWITZ

Abstract. We show that if the maximal ideal space of a commutative semisimple Banach algebra B contains no isolated points, then every compact multiplier is trivial.

In [1] and [2] it was shown that if a commutative semisimple Banach algebra B satisfies certain regularity conditions and if the maximal ideal space of B contains no isolated points, then every compact multiplier of B is trivial. (T is a multiplier of B if T is a linear operator satisfying $T(fg) = f \cdot Tg$ for $f, g \in B$.) In this note we show that the regularity conditions used in [1] and [2] are unnecessary. Specifically we prove the following.

Theorem. Let B be a commutative semisimple Banach algebra and T a compact multiplier of B. If the maximal ideal space of B contains no isolated points, then $T = 0$.

Proof. Let X denote the maximal ideal space of B and assume that X contains no isolated points. Since T is a multiplier of B, there exists a complex-valued continuous function u on X with $(Tf)'(x) = u(x)f(x)$ for all $f \in B$ and $x \in X$. We will show first that for each $x \in X$, $u(x)$ is an eigenvalue of the adjoint T^* of T. Indeed, for $x \in X$, let e_x denote the linear functional in B^* which is evaluation at x, i.e. $e_x(f) = f(x)$. Then for each $f \in B$, we have $(T^*e_x)(f) = e_x(Tf) = (Tf)'(x) = u(x)f(x) = u(x)e_x(f)$. Thus $T^*e_x = u(x)e_x$ which proves that $u(x)$ is an eigenvalue of T^*.

Now T, and hence T^*, is compact, so that the spectrum of T^*, $\sigma(T^*)$, is a denumerable set with 0 as its only possible limit point. $\sigma(T^*)$ also has the property that every nonzero element in $\sigma(T^*)$ is an eigenvalue of finite multiplicity. Suppose x_0 is a point in X which is not an isolated point. We claim that $u(x_0) = 0$. Indeed, suppose $u(x_0) \neq 0$. Since u is a continuous function on X and x_0 is a limit point of X, for each positive integer n, there exists an element x_n, $x_0 \neq x_n \in X$, with $|u(x_n) - u(x_0)| < 1/n$. However, each nonzero eigenvalue of T^* has finite multiplicity and so $u(x_n) = u(x_0)$ for only finitely many n. Therefore $u(x_0)$ is a limit point of $\{u(x_n)\} \subset \sigma(T^*)$. However 0 is the only possible limit point of $\sigma(T^*)$ since T^* is compact. This contradiction shows that $u(x_0) = 0$. Since no element in X is an isolated point, by hypothesis, we conclude that $u(x) = 0$ for all $x \in X$. Hence
\[(Tf)^\ast(x) = u(x)\hat{f}(x) = 0\text{ for all } x \in X \text{ and } f \in B. \] Therefore \((Tf)^\ast = 0 \text{ for all } f \in B, \) and since \(B \) is semisimple, \(Tf = 0 \text{ for all } f \in B, \) as claimed.

We remark that if the maximal ideal space \(X \) of \(B \) has isolated points, then there exist nonzero compact multipliers of \(B. \) For, if \(x_0 \) is an isolated point of \(X, \) then by Silov’s Idempotent Theorem, there is an idempotent \(E \) in \(B \) satisfying \(E(x) = 1 \) if and only if \(x = x_0. \) Then the operator \(T \) defined by \(Tf = Ef = \hat{f}(x_0)E \) is clearly a nonzero multiplier which is compact since its range is one-dimensional.

Finally we remark that if \(H \) denotes the Hilbert space of square summable sequences with component-wise multiplication, then \(H \) is a commutative semisimple Banach algebra with discrete maximal ideal space. If we let \((a_n) \) be a sequence of complex numbers converging to 0, then the operator \(T: \{x_n\} \to \{a_nx_n\} \) is a nonzero compact multiplier of \(H \) and \(\sigma(T) = \{a_n|n \text{ is a positive integer}\} \cup \{0\}. \)

Bibliography

Department of Mathematics, University of Massachusetts at Boston, Dorchester, Massachusetts 02125