On the weak Radon-Nikodým property
HTML articles powered by AMS MathViewer
- by Nassif Ghoussoub and Elias Saab
- Proc. Amer. Math. Soc. 81 (1981), 81-84
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589141-4
- PDF | Request permission
Abstract:
It is shown that in a Banach lattice the notions of the Radon-Nikodym property and the weak Randon-Nikodym property coincide. A problem of H. P. Lotz is solved affirmatively, namely, if the dual ${Y^ * }$ of a Banach space $Y$ is complemented in a Banach lattice $E$ and if ${l^1}$ does not embed into $Y$ then ${Y^ * }$ has the Radon-Nikodym property.References
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- D. H. Fremlin, Pointwise compact sets of measurable functions, Manuscripta Math. 15 (1975), 219–242. MR 372594, DOI 10.1007/BF01168675
- David H. Fremlin and Michel Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117–142. MR 544700, DOI 10.1007/BF01214191
- A. Grothendieck, Une caractérisation vectorielle-métrique des espaces $L^1$, Canadian J. Math. 7 (1955), 552–561 (French). MR 76301, DOI 10.4153/CJM-1955-060-6
- James Hagler, Some more Banach spaces which contain $L^{1}$, Studia Math. 46 (1973), 35–42. MR 333670, DOI 10.4064/sm-46-1-35-42
- Richard Haydon, Some more characterizations of Banach spaces containing $l_{1}$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269–276. MR 423047, DOI 10.1017/S0305004100052890 L. Janicka, Wlasnosci typu Radona-Nikodyma dla przestrzeni Banacha, Thesis, Wroclaw, Poland, 1978.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9 H. P. Lotz, The Radon-Nikodym property in Banach lattices (preprint).
- Kazimierz Musiał, The weak Radon-Nikodým property in Banach spaces, Studia Math. 64 (1979), no. 2, 151–173. MR 537118, DOI 10.4064/sm-64-2-151-174 —, Martingales of Pettis integrable functions, Lecture Notes in Math. (to appear).
- Kazimierz Musiał and Czesław Ryll-Nardzewski, Liftings of vector measures and their applications to RNP and WRNP, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 645, Springer, Berlin-New York, 1978, pp. 162–171. MR 502438 A. Pełczynski, On Banach spaces containing ${L^1}(\mu )$, Studia Math. 30 (1968), 231-246.
- Heinrich von Weizsäcker, Strong measurability, liftings and the Choquet-Edgar theorem, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 645, Springer, Berlin-New York, 1978, pp. 209–218. MR 502443
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 81-84
- MSC: Primary 46G10; Secondary 46B22
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589141-4
- MathSciNet review: 589141