Another $q$-extension of the beta function
HTML articles powered by AMS MathViewer
- by George E. Andrews and Richard Askey
- Proc. Amer. Math. Soc. 81 (1981), 97-100
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589145-1
- PDF | Request permission
Abstract:
Another $q$-extension of the beta function is given. This one has a special case that is a symmetric extension of the symmetric beta distribution.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- Jacques Labelle, Tableau d’Askey, Orthogonal polynomials and applications (Bar-le-Duc, 1984) Lecture Notes in Math., vol. 1171, Springer, Berlin, 1985, pp. xxxvi–xxxvii (French). MR 838967
- Richard Askey, Ramanujan’s extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), no. 5, 346–359. MR 567718, DOI 10.2307/2321202
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI 10.1090/memo/0319
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 97-100
- MSC: Primary 33A15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589145-1
- MathSciNet review: 589145