## Simple homotopy types for $(G, m)$-complexes

HTML articles powered by AMS MathViewer

- by Micheal N. Dyer PDF
- Proc. Amer. Math. Soc.
**81**(1981), 111-115 Request permission

## Abstract:

Let $G$ be a finite group. We use the fact that each element of the Whitehead group Wh$(G)$ may be represented by at most a $2 \times 2$ (nonsingular) matrix to deduce results about when simple homotopy type and homotopy type agree. As examples, we give complete descriptions of the simple homotopy types for $({Z_m} \times {Z_n},2)$-complexes, provided $S{K_1}(Z({Z_m} \times {Z_n})) = 0$.## References

- Roger C. Alperin, R. Keith Dennis, and Michael R. Stein,
*The non-triviality of $SK_{1}(Z\pi )$*, Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972) Lecture Notes in Math., Vol. 353, Springer, Berlin, 1973, pp.Β 1β7. MR**0332929** - Hyman Bass,
*Algebraic $K$-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0249491**
W. Browning, - Marshall M. Cohen,
*A course in simple-homotopy theory*, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR**0362320**, DOI 10.1007/978-1-4684-9372-6 - Micheal N. Dyer,
*Homotopy classification of $(\pi , m)$-complexes*, J. Pure Appl. Algebra**7**(1976), no.Β 3, 249β282. MR**400215**, DOI 10.1016/0022-4049(76)90053-0 - Micheal N. Dyer,
*On the essential height of homotopy trees with finite fundamental group*, Compositio Math.**36**(1978), no.Β 2, 209β224. MR**515046** - Micheal N. Dyer,
*An application of homological algebra to the homotopy classification of two-dimensional CW-complexes*, Trans. Amer. Math. Soc.**259**(1980), no.Β 2, 505β514. MR**567093**, DOI 10.1090/S0002-9947-1980-0567093-4
M. Dyer and A. Sieradski, - Sushil Jajodia and Bruce A. Magurn,
*Surjective stability of units and simple homotopy type*, J. Pure Appl. Algebra**18**(1980), no.Β 1, 45β58. MR**578565**, DOI 10.1016/0022-4049(80)90115-2 - Tsit-yuen Lam,
*Induction theorems for Grothendieck groups and Whitehead groups of finite groups*, Ann. Sci. Γcole Norm. Sup. (4)**1**(1968), 91β148. MR**231890**, DOI 10.24033/asens.1161
W. Metzler, - Michael R. Stein,
*Whitehead groups of finite groups*, Bull. Amer. Math. Soc.**84**(1978), no.Β 2, 201β212. MR**466265**, DOI 10.1090/S0002-9904-1978-14453-X - C. T. C. Wall,
*Surgery on compact manifolds*, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR**0431216** - C. T. C. Wall,
*Formal deformations*, Proc. London Math. Soc. (3)**16**(1966), 342β352. MR**193635**, DOI 10.1112/plms/s3-16.1.342

*Finite CW complexes of cohomological dimension 2 with finite abelian*${\pi _1}$, preprint.

*Trees of homotopy types of two-dimensional CW-complexes*, Comment. Math. Helv.

**48**(1973), 31-44; II, Trans. Amer. Math. Soc.

**205**(1975), 115-125.

*Nichtrealisierbare Torsionswerte bei Selbstaquivalenzen gewisser zweidimensionaler Komplexe*, Homological Group Theory, London Math. Soc. Lecture Notes, vol. 36, London Math. Soc., 1979, pp. 327-338.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**81**(1981), 111-115 - MSC: Primary 57Q10; Secondary 55P15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589149-9
- MathSciNet review: 589149