## A remarkable simple closed curve: revisited

HTML articles powered by AMS MathViewer

- by O. G. Harrold PDF
- Proc. Amer. Math. Soc.
**81**(1981), 133-136 Request permission

## Abstract:

It is shown that the pathology of R. H. Foxβs remarkable simple closed curve is in a sense explained below more complicated than that of some examples of the well-known Fox-Artin paper.## References

- R. H. Bing,
*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145β158. MR**61377**, DOI 10.2307/1969836 - P. H. Doyle and J. G. Hocking,
*Some results on tame disks and spheres in $E^{3}$*, Proc. Amer. Math. Soc.**11**(1960), 832β836. MR**126839**, DOI 10.1090/S0002-9939-1960-0126839-2 - Ralph H. Fox and Emil Artin,
*Some wild cells and spheres in three-dimensional space*, Ann. of Math. (2)**49**(1948), 979β990. MR**27512**, DOI 10.2307/1969408 - R. H. Fox and O. G. Harrold,
*The Wilder arcs*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.Β 184β187. MR**0140096** - Ralph H. Fox,
*A remarkable simple closed curve*, Ann. of Math. (2)**50**(1949), 264β265. MR**30745**, DOI 10.2307/1969450 - W. Graeub,
*Die semilinearen Abbildungen*, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl.**1950**(1950), 205β272 (German). MR**0042709** - O. G. Harrold Jr.,
*Locally tame curves and surfaces in three-dimensional manifolds*, Bull. Amer. Math. Soc.**63**(1957), 293β305. MR**88718**, DOI 10.1090/S0002-9904-1957-10125-6
β, - Edwin E. Moise,
*Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding*, Ann. of Math. (2)**59**(1954), 159β170. MR**61822**, DOI 10.2307/1969837

*An Additive Index Theorem for certain wildly embedded curves and surfaces*(Proc. Conf. Geometric Topology), Academic Press, New York, 1979.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**81**(1981), 133-136 - MSC: Primary 57M30; Secondary 57N45
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589155-4
- MathSciNet review: 589155