Further divisibility properties of the $q$-tangent numbers
HTML articles powered by AMS MathViewer
- by Dominique Foata
- Proc. Amer. Math. Soc. 81 (1981), 143-148
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589157-8
- PDF | Request permission
Abstract:
The $q$-tangent number ${T_{2n + 1}}(q)$ is shown to be divisible by ${(1 + q)^{a(n,1)}}{(1 + {q^2})^{a(n,2)}} \cdots {(1 + {q^n})^{a(n,n)}}$, where the $a(n,i)$’s are positive integers having the maximal property that $a(n,1) + a(n,2) + \cdots + a(n,n) = 2n$ whenever $n$ is a power of 2.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews and Ira Gessel, Divisibility properties of the $q$-tangent numbers, Proc. Amer. Math. Soc. 68 (1978), no. 3, 380–384. MR 462960, DOI 10.1090/S0002-9939-1978-0462960-0
- Dominique Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J. 41 (1974), 305–318 (French). MR 337643 I. Gessel, Generating functions and enumeration of sequences, Ph. D. thesis, M.I.T., 1977. D. Rawlings, Generalized Worpitzky identities, Univ. of California, San Diego, 1979 (preprint); European J. Combinatorics (to appear). M. P. Schützenberger, Oral communication, Combinatorics Conference, Oberwolfach, 1975.
- Richard P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 336–356. MR 409206, DOI 10.1016/0097-3165(76)90028-5
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 143-148
- MSC: Primary 05A15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589157-8
- MathSciNet review: 589157