FIXED SUBALGEBRA OF A COMMUTATIVE FROBENIUS ALGEBRA

GORO AZUMAYA

Abstract. Let B be a finite-dimensional commutative algebra generated by a single element, and let $A = B \otimes B$. We prove that the fixed subalgebra of A under the involution $b_1 \otimes b_2 \mapsto b_2 \otimes b_1$ is Frobenius if and only if either the characteristic of B is different from 2 or B is separable.

1. Introduction. Let A be a (finite-dimensional) Frobenius algebra over a field and G a finite group of automorphisms of A. As is shown by J. L. Pascaud and J. Valette [3], it does not necessarily follow then that the fixed subalgebra A^G under G is Frobenius; indeed, they give an example of a local commutative Frobenius A of any characteristic different from 2 and a group G of order 2 such that A^G is not Frobenius. (Note that for commutative algebras the concepts of “Frobenius” and “quasi-Frobenius” coincide.) In connection with this, N. Jacobson has raised the following question: Suppose B is a commutative Frobenius algebra, or more particularly, an algebra generated by a single element, $A = B \otimes B$, and G is the group of order 2 generated by the automorphism $\sigma: b_1 \otimes b_2 \mapsto b_2 \otimes b_1$ of A. Is then A^G Frobenius too? In the present paper the question is answered affirmatively in the case where B is singly generated and the characteristic of B is different from 2.

2. Lemmas. Let B be a finite-dimensional commutative algebra over a field K, $A = B \otimes_K B$ and $G = \{1, \sigma\}$, where σ is the automorphism as above. Suppose that w_1, w_2, \ldots, w_n are a basis of B over K. Then the n^2 elements $w_i \otimes w_j$ ($1 \leq i, j \leq n$) form a basis of A. If we observe that $(w_i \otimes w_j)^\sigma = w_j \otimes w_i$ for all i, j, we can easily derive the following

Lemma 1. Let w_1, w_2, \ldots, w_n be a basis of B over K. Then the n elements $w_i \otimes w_i$ ($1 \leq i < n$) and $n(n - 1)/2$ elements $w_i \otimes w_j + w_j \otimes w_i$ ($1 < i < j < n$) together form a basis of A^G over K.

Let L be an extension field of K. Then $B \otimes_K L$ is considered a commutative algebra over L, and we have $A \otimes_K L = (B \otimes_K L) \otimes_L (B \otimes_K L)$. The automorphism σ of A can also be regarded as an automorphism of $A \otimes_K L$ in the natural manner. Moreover, if w_1, w_2, \ldots, w_n are a basis of B over K then it is also a basis

Received by the editors April 3, 1980.

AMS (MOS) subject classifications (1970). Primary 16A36, 16A72, 16A74.

Key words and phrases. Finite group of automorphisms acting on a ring, Frobenius algebra, characteristic different from 2.

© 1981 American Mathematical Society
0002-9939/81/0000-0063/$02.00

213
of $B \otimes_K L$ over L, and therefore by applying Lemma 1 to $B \otimes_K L$ and to this basis we know that the $n + n(n - 1)/2 (= n(n + 1)/2)$ elements given in Lemma 1 together form a basis of $(A \otimes_K L)^G$ over L. Thus we have

Lemma 2. Let L be an extension field of K. Then $(A \otimes_K L)^G = A^G \otimes_K L$.

Let $B = B_1 \oplus B_2 \oplus \cdots \oplus B_r$ be a decomposition of B into a direct sum of orthogonal subalgebras. Put $A_{\alpha, \beta} = B_{\alpha} \otimes_K B_{\beta}$ for every $\alpha, \beta (= 1, 2, \ldots, r)$. Then $A_{\alpha, \beta}$'s are orthogonal subalgebras of A such that $A = \sum A_{\alpha, \beta}$. Each $A_{\alpha, \beta}$ clearly satisfies $A_{\alpha, \beta}^G = A_{\alpha, \alpha}$, and in particular every $A_{\alpha, \alpha}$ is a G-invariant subalgebra. Let (α, β) be a pair such that $1 < \alpha < \beta < r$, and put $A_{\alpha, \beta}^G = A_{\alpha, \beta} \oplus A_{\beta, \alpha}$. Then $A_{\alpha, \beta}^G$ is also a G-invariant subalgebra, and we have $A_{\alpha, \beta}^G = \{a + a^\alpha | a \in A_{\alpha, \beta}\}$, since $A_{\alpha, \beta}$ and $A_{\beta, \alpha}$ are orthogonal; thus we know that, by associating $a \in A_{\alpha, \beta}$ with $a + a^\alpha$, $A_{\alpha, \beta}^G$ is isomorphic to $A_{\alpha, \beta}$ as algebras. We have therefore the following

Lemma 3. Let B be a direct sum of orthogonal subalgebras B_{α}, $1 < \alpha < r$. Let $A_{\alpha, \beta} = B_{\alpha} \otimes_K B_{\beta}$ for every α, β, and let $A_{\alpha, \beta}^G = A_{\alpha, \beta} \oplus A_{\beta, \alpha}^G$ for every α, β such that $1 < \alpha < \beta < r$. Then the $r(r + 1)/2$ algebras $A_{\alpha, \alpha}$ and $A_{\alpha, \beta}$ are orthogonal G-invariant subalgebras of $A = B \otimes_K B$, and A is a direct sum of these subalgebras; moreover, every algebra $A_{\alpha, \beta}^G$ is isomorphic to $A_{\alpha, \beta}$.

Lemma 4. Let B be a commutative Frobenius algebra, and let $A = B \otimes_K B$. Then A^G is Frobenius if and only if $A_{\alpha, \alpha}^G$ is Frobenius for every α.

Proof. From Lemma 3 it follows that A^G is the direct sum of orthogonal subalgebras $A_{\alpha, \alpha}^G$ and $A_{\alpha, \beta}^G$, where the latter algebras are isomorphic to $A_{\alpha, \beta}$. Therefore A^G is Frobenius if and only if all $A_{\alpha, \alpha}^G$ and $A_{\alpha, \beta}$ are Frobenius. Since however B is a Frobenius algebra, each direct summand subalgebra B_{α} and hence $A_{\alpha, \beta} = B_{\alpha} \otimes_K B_{\beta}$ are Frobenius algebras too. Therefore, in order that A^G be Frobenius it is (necessary and) sufficient that $A_{\alpha, \alpha}^G$ be Frobenius for all α.

3. **Main results.**

Proposition 5. Let B be an algebra generated by a nonzero nilpotent element over a field K. Then A^G is a Frobenius algebra if and only if the characteristic of K is different from 2.

Proof. Let $B = K[c]$ with a nilpotent element $c \neq 0$ of B. Let n be the least positive integer such that $c^n = 0$. Then $n > 2$, and the n elements $1, c, c^2, \ldots, c^{n-1}$ form a basis of B over K. Therefore, by Lemma 1, the n elements $c^i \otimes c^j (0 \leq i \leq n - 1)$ and $n(n - 1)/2$ elements $c^i \otimes c^j + c^j \otimes c^i (0 < i < j \leq n - 1)$ together form a basis of A^G over K. If we remove $1 \otimes 1$ (the unit element of A^G) out of the basis then we have a subset W. Let N be the K-subspace of A^G generated by W. Then since every element of W is nilpotent, N is contained in the radical of A^G. It is however clear that $A^G = N \oplus K(1 \otimes 1)$, and this, together with the fact that the radical is a proper ideal of A^G, implies that N coincides with the radical and the factor algebra A^G/N is isomorphic to K. Thus, A^G is a local ring and has an up-to-isomorphism unique simple module, which is one-dimensional over K. Moreover, N is the ideal of A^G generated by $c \otimes c$ and
1 \otimes c + c \otimes 1$, because
\[c^i \otimes c^i = (c \otimes c)^i \text{ for } i > 0, \]
\[1 \otimes c^2 + c^2 \otimes 1 = (1 \otimes c + c \otimes 1)^2 - 2(c \otimes c), \]
\[1 \otimes c^i + c^i \otimes 1 = (1 \otimes c + c \otimes 1)(1 \otimes c^{i-1} + c^{i-1} \otimes 1) \]
\[- (c \otimes c)(1 \otimes c^{i-2} + c^{i-2} \otimes 1) \text{ for } i > 2 \]
and
\[c^i \otimes c^j + c^j \otimes c^i = (c \otimes c)^j(1 \otimes c^{j-i} + c^{j-i} \otimes 1) \text{ for } j > i > 0. \]

(More precisely, by using these equalities, it is possible to show without difficulty that every element of \(W \) is expressed as a polynomial of \(c \otimes c \) and \(1 \otimes c + c \otimes 1 \) with integral coefficients and without constant term.)

Let now \(M \) be the socle of \(A^G \), i.e., the sum of all simple ideals of \(A^G \). As is well known, \(M \) is then the annihilator of the radical \(N \) in \(A^G \) and therefore is the annihilator of the generators \(c \otimes c \) and \(1 \otimes c + c \otimes 1 \) of \(N \) in \(A^G \). Let \(M' \) be the annihilator of \(c \otimes c \) in \(A^G \). If we observe that
\[(c \otimes c)(c^i \otimes c^j) = c^{i+1} \otimes c^{j+1} \]
is a member of \(W \) or \(= 0 \) according as \(0 < i < n - 2 \) or \(j = n - 1 \) and also
\[(c \otimes c)(c^i \otimes c^j + c^j \otimes c^i) = c^{i+1} \otimes c^{j+1} + c^{j+1} \otimes c^{i+1} \]
is a member of \(W \) or \(= 0 \) according as \(0 < i < j < n - 2 \) or \(j = n - 1 \), then we know that \(M' \) is the \(K \)-subspace of \(A^G \) generated by \(c^{n-1} \otimes c^{n-1}, 1 \otimes c^{n-1} + c^{n-1} \otimes 1, c \otimes c^{n-1} + c^{n-1} \otimes c, \ldots, c^{n-2} \otimes c^{n-1} + c^{n-1} \otimes c^{n-2} \). Next multiply these \(n \) elements by \(1 \otimes c + c \otimes 1 \). Then we have
\[(1 \otimes c + c \otimes 1)(c^{n-1} \otimes c^{n-1}) = 0, \]
\[(1 \otimes c + c \otimes 1)(1 \otimes c^{n-1} + c^{n-1} \otimes 1) = c \otimes c^{n-1} + c^{n-1} \otimes c, \ldots, \]
\[(1 \otimes c + c \otimes 1)(c^{n-3} \otimes c^{n-1} + c^{n-1} \otimes c^{n-3}) = c^{n-2} \otimes c^{n-1} + c^{n-1} \otimes c^{n-2}, \]
\[(1 \otimes c + c \otimes 1)(c^{n-2} \otimes c^{n-1} + c^{n-1} \otimes c^{n-2}) = 2(c^{n-2} \otimes c^{n-1}), \]
where the last element is \(0 \) if and only if the characteristic of \(K \) is \(2 \). This means that the annihilator of \(1 \otimes c + c \otimes 1 \) in \(M' \), i.e., the annihilator \(M \) of \(N \) in \(A^G \) is \(K \cdot (c^{n-1} \otimes c^{n-1}) \) or \(K \cdot (c^{n-1} \otimes c^{n-1}) \oplus K \cdot (c^{n-2} \otimes c^{n-1} + c^{n-1} \otimes c^{n-2}) \) according as the characteristic of \(K \) is different from 2 or equal to 2. Now, since \(A^G \) is a local ring, \(A^G \) is a Frobenius algebra if and only if \(A^G \) has a unique simple ideal, or equivalently, its socle \(M \) is simple. But since \(A^G / N \) is isomorphic to \(K \), this is equivalent to the condition that \(M \) is one-dimensional over \(K \). Thus we have that \(A^G \) is Frobenius if and only if \(M = K \cdot (c^{n-1} \otimes c^{n-1}), \) i.e., the characteristic of \(K \) is different from 2.

Corollary 6. Let \(B = K[a] \) and let the minimal polynomial \(f(t) \) of \(a \) over \(K \) be a power of a linear polynomial in \(K \). Then \(A^G \) is a Frobenius algebra if and only if the characteristic of \(K \) is different from 2 or \(f(t) \) is linear.

Proof. Let \(f(t) = (t - \lambda)^n, \lambda \in K \). If we put \(c = a - \lambda \) then \(B = K[c] \) and \(n \) is the least positive integer such that \(c^n = 0 \). Thus, if \(n > 1 \) then \(c \neq 0 \) and by Proposition 5, \(A^G \) is Frobenius if and only if the characteristic of \(K \) is different
from 2, while if \(n = 1 \) then \(c = 0 \) and clearly \(B = K = A = A^G \) and the \(K \)-algebra \(K \) is trivially a Frobenius algebra.

Theorem 7. Let \(B \) be \(K[a] \) and let \(f(t) \) be the minimal polynomial of \(a \) over \(K \). Let \(A = B \otimes_K B \) and let \(G = \{1, \sigma\} \), where \(\sigma \) is the automorphism of \(A \) defined by \((b_1 \otimes b_2)^\sigma = b_2 \otimes b_1 \) for \(b_1, b_2 \in B \). Then \(A^G \) is a Frobenius algebra over \(K \) if and only if the characteristic of \(K \) is different from 2 or \(f(t) \) is separable (i.e., \(f(t) \) has no multiple root in a splitting field).

Proof. (i) Assume first that \(K \) is algebraically closed. Then \(f(t) \) is decomposed as
\[
f(t) = (t - \lambda_1)^{n_1}(t - \lambda_2)^{n_2} \cdots (t - \lambda_r)^{n_r},
\]
where \(\lambda_1, \lambda_2, \ldots, \lambda_r \) are distinct roots of \(f(t) \) in \(K \). As is well known, this decomposition yields a direct decomposition \(B = B_1 \oplus B_2 \oplus \cdots \oplus B_r \) into orthogonal subalgebras such that if \(a_a \) is the \(B_a \)-component of \(a \) then \(B_a = K[a_a] \) and \((t - \lambda_a)^{n_a} \) is the minimal polynomial of \(a_a \) over \(K \) for every \(a \). Now, as a homomorphic image of the polynomial ring \(K[t] \), \(B \) is a principal ideal ring and therefore a Frobenius algebra (cf. Nakayama [1, Theorem 16]). From this follows by Lemma 4 that \(A^G \) is Frobenius if and only if \(A_{a,a}^G \), where \(A_{a,a} = B_a \otimes_K B_a \), is Frobenius for every \(a \). On the other hand, according to Corollary 6, each \(A_{a,a}^G \) is Frobenius if and only if the characteristic of \(K \) is different from 2 or \(n_a = 1 \). Thus we have that \(A^G \) is a Frobenius algebra if and only if either the characteristic of \(K \) is different from 2 or \(n_1 = n_2 = \cdots = n_r = 1 \).

(ii) Suppose that \(K \) is not necessarily algebraically closed. Let \(L \) be the algebraic closure of \(K \). Then \((A \otimes_K L)^G = A^G \otimes_K L \) by Lemma 2. Therefore it follows by Nakayama [1, Theorem 14] or Nakayama and Nesbitt [2, Theorem 5] that \(A^G \) is Frobenius over \(K \) if and only if \((A \otimes_K L)^G \) is Frobenius over \(L \). But if we observe that \(A \otimes_K L = (B \otimes_K L) \otimes_L (B \otimes_K L) \), \(B \otimes_K L = L[a] \) and the minimal polynomial of \(a \) over \(L \) is the same as \(f(t) \), we can conclude by the above case (i) that the latter condition is equivalent to the condition that the characteristic of \(L \) whence of \(K \) is different from 2 and \(f(t) \) has no multiple root in \(L \). This completes the proof of our Theorem.

References

Department of Mathematics, Indiana University, Bloomington, Indiana 47401