THE FIRST EIGENVALUE OF THE LAPLACIAN FOR PLANE DOMAINS

CHRISTOPHER B. CROKE

Abstract. We prove an improved lower bound for the first eigenvalue of the Laplacian of a connected plane domain in terms of its inradius and connectivity.

In this note we find a lower bound for the first eigenvalue, \(\lambda_1 \), of the Dirichlet problem for the Laplacian of a connected plane domain \(D \) in terms of its inradius \(\rho \) (the radius of the largest disk contained in \(D \)), and the connectivity \(k \) (i.e., the number of boundary components).

Hayman [3] was the first to prove an inequality of this type. He proved \(\lambda_1(D) > 1/900\rho^2 \) in the case \(k = 1 \) (i.e., \(D \) simply connected). Next, Osserman [4] showed that

\[
\lambda_1(D) > \frac{1}{4\rho^2}, \quad k = 1, 2,
\]

\[
\lambda_1(D) > \frac{1}{k^2\rho^2}, \quad k > 2.
\]

In that paper Osserman suggests that one might be able to get a bound of the form \(\lambda_1(D) > c/k\rho^2 \). Taylor [6] proved that such a bound exists, although no explicit constant \(c \) was given. Recently Cheng [2] has shown, using a completely different method, that \(c \) can be taken to be \(1/(14000\pi)^2 \).

In this note we show

\[
\lambda_1(D) > \frac{1}{2k\rho^2} \quad \text{for } k > 2 \quad \text{(i.e., } c = \frac{1}{2}\text{)}.
\]

The method used here is similar to the one used in [4]. The method is useful only for plane domains, whereas Taylor’s, Hayman’s, and Cheng’s methods are useful in higher dimensions or for variable curvatures.

Theorem. Let \(D \) be a connected, \(k \)-connected, domain in the plane with inradius \(\rho \). Let \(A \) represent the area of \(D \) and \(L \) represent the total boundary length. Then

\[
\frac{L}{A} > \frac{1}{\rho}, \quad k = 1, 2. \quad (1)
\]

\[
\frac{L}{A} > \frac{2}{(1 + \sqrt{k - 1})\rho} > \frac{\sqrt{2}}{\sqrt{k} \rho}, \quad k > 2. \quad (2)
\]

\[
\lambda_1(D) > \frac{1}{4\rho^2}, \quad k = 1, 2. \quad (3)
\]

\[
\lambda_1(D) > \frac{1}{(1 + \sqrt{k - 1})^2\rho^2 > 1/2k\rho^2}, \quad k > 2. \quad (4)
\]

Received by the editors March 24, 1980.
1980 Mathematics Subject Classification. Primary 52A40.

1Supported in part by NSF Grant MCS 76-01692.

© 1981 American Mathematical Society 0002-9939/81/0000-0080/$01.50
Proof. Inequalities (1) and (2) (applied to subdomains of D) imply inequalities (3) and (4) by Cheeger's result [1] as modified by Osserman [4]. Inequality (1) (and (3)) were proved in [4]. It is a simple computation to see $\sqrt{2} \sqrt{k} > (1 + \sqrt{k - 1}) p$. Hence we need only show that for $k > 2$, $L/A > 2/(1 + \sqrt{k - 1}) p$.

We consider two cases.

Case 1. $A < (1 + \sqrt{k - 1})^2 \pi \rho^2$.

By the isoperimetric inequality for plane domains we have $L^2/A > 4 \pi$. Hence

$L/A > 2\sqrt{\pi}/\sqrt{A} > 2/(1 + \sqrt{k - 1}) p$.

Case 2. $A > (1 + \sqrt{k - 1})^2 \pi \rho^2$.

By a standard argument in the plane [4, p. 548] one has

$$\frac{\rho L}{A} > 1 - \frac{\pi (k - 2) \rho^2}{A} > 1 - \frac{(k - 2)}{(1 + \sqrt{k - 1})^2} = \frac{2}{(1 + \sqrt{k - 1})^2}.$$

This proves the theorem.

Remarks. Inequalities (1) and (2) are sharp for $k = 2$, with equality for a circular annulus. For $k = 1$ inequality (1) is strict but it is also the best possible, as was noted by Santaló [5, p. 155], as one sees by considering long thin rectangles. For $k > 3$ inequality (2) is strict and not the best possible. In this case one could ask for the best constants $C(k)$ such that $L/A > C(k)/\sqrt{k} \rho$. The theorem gives $C(k) > 2 \sqrt{k} / (1 + \sqrt{k - 1})$, thus asymptotically $C(k) > 2$ (i.e. for every $\epsilon > 0$ and for sufficiently large k, $C(k) > 2 - \epsilon$). By considering large disks with trianularly packed points removed, one can see that asymptotically $C(k) < 2 \sqrt{2 \pi / 3 \sqrt{3}}$. Thus the theorem gives an estimate which is sharp for $k = 2$ and close to the best asymptotically.

As for inequality (4), Osserman [4, p. 552] gives examples where $\lambda_1(D) < \pi^2/\rho^2$; thus the inequality is not too far from the best possible.

References

Department of Mathematics, University of California, Berkeley, California 94720

Current address: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104