A REMARK ON ANALYTIC SETS WITH
σ-COMPACT SECTIONS

V. V. SRIVATSA

Abstract. We show that there exists an analytic set \(A \subset \omega^n \times \omega^m \) and having \(\sigma \)-compact vertical sections such that \(A \) contains no analytic set \(B \) with compact vertical sections and having the same projection to the first coordinate as \(A \). This answers a question of J. R. Steel.

The problem considered in this note has its genesis in the following question posed by C. Dellacherie: Suppose \(A \subset \omega^n \times \omega^m \) is analytic (\(\Sigma^1_1 \)) and has \(\sigma \)-compact vertical sections. Can \(A \) be written as \(\bigcup_{n \geq 0} A_n \), where each \(A_n \) is analytic and has compact vertical sections? In [5], J. R. Steel showed that Dellacherie's question admits a negative answer. Steel then formulated the following question: Suppose \(A \subset \omega^n \times \omega^m \) is analytic and has \(\sigma \)-compact vertical sections. Does there exist an analytic set \(B \) such that \(B \subset A \), \(B \) has compact vertical sections and \(\pi(B) = \pi(A) \), where \(\pi \) denotes projection to the first coordinate? We prove in this note that the answer to Steel's question is also negative. Specifically, we prove

Theorem. There exists a \(\Sigma^1_1 \) set \(A \subset \omega^n \times \omega^m \) having countable (and hence \(\sigma \)-compact) vertical sections such that whenever \(B \) is \(\Sigma^1_1 \), \(B \subset A \) and \(B \) has compact vertical sections, then \(\pi(B) \neq \pi(A) \).

Proof. We follow the notation and terminology of [2]. Fix a \(\Sigma^1_1 \) set \(R \subset \omega^n \times \omega^m \times \omega^m \) which is universal for \(\Sigma^1_1 \) subsets of \(\omega^n \times \omega^m \). By [2, 4D.2], fix a \(\Pi^1_1 \)-recursive partial function \(d: \omega \times \omega^m \to \omega^m \) which parametrizes points in \(A_r(\alpha) \cap \omega^m \).

Define
\[
P(\alpha, s) \leftrightarrow \text{Seq}(s) \land (\forall \beta)(R(\alpha, \alpha, \beta) \to (\exists i < 1h(s))
(d((s)\downarrow, \alpha) \land d((s)\downarrow, \alpha) = \beta)).
\]

Clearly \(P \) is \(\Pi^1_1 \). By the Easy Uniformization Theorem [2, 4B.4] there is a \(\Pi^1_1 \) set \(G \) which uniformizes \(P \). Let \(f: \omega^m \to \omega \) be the (partial) function whose graph is \(G \). Then \(f \) is a \(\Pi^1_1 \)-recursive partial function. Next define
\[
Q(\alpha, \beta) \leftrightarrow f(\alpha) \downarrow \land (\exists i)(i < 1h(f(\alpha)) \land d((f(\alpha))\downarrow, \alpha) \downarrow \land d((f(\alpha))\downarrow, \alpha) = \beta).
\]

Now check that
(a) \(Q \) is \(\Pi^1_1 \),
(b) \(Q_\alpha = \{ \beta: Q(\alpha, \beta) \} \) is finite, and
(c) if \(R_{\alpha, \alpha} = \{ \beta: R(\alpha, \alpha, \beta) \} \) is finite, then \(R_{\alpha, \alpha} \subset Q_\alpha \).

Received by the editors March 31, 1980.
1980 Mathematics Subject Classification. Primary 03E15, 04A15; Secondary 28A05.
Key words and phrases. Analytic set, Borel set, uniformization.
The last fact is an easy consequence of the Effective Perfect Set Theorem [2, 4F.1].

Finally, define

\[A(\alpha, \beta) \leftrightarrow (\exists n)((\forall i)(\beta(i) = n) \& \neg Q(\alpha, \beta)). \]

Then \(A \) is \(\Sigma^1_1 \) and has countable vertical sections. Moreover, since each \(Q_\alpha \) is finite, it follows that \(\pi(A) = \omega^\omega \). Suppose now that \(B \subset A \), \(B \) is \(\Sigma^1_1 \) and \(B \) has compact vertical sections. Find a code \(\alpha_0 \) for \(B \); that is, find \(\alpha_0 \) such that \(B = R_{\alpha_0} \) (= \(\{ (\alpha, \beta): R(\alpha_0, \alpha, \beta) \} \)). Since \(B_\alpha \subset A_\alpha \) and \(A_\alpha \) is discrete, it follows that \(B_\alpha \) is finite. In particular, \(B_{\alpha_0} = R_{\alpha_0, \alpha_0} \) is finite. So, by (c), \(B_{\alpha_0} \subset Q_{\alpha_0} \). But also \(B_{\alpha_0} \subset A_{\alpha_0} \subset \omega^\omega \setminus Q_{\alpha_0} \). It follows that \(B_{\alpha_0} = \emptyset \) and hence \(\pi(B) \neq \omega^\omega = \pi(A) \). This completes the proof.

We conclude with some remarks.

A. The above shows that the following weak 'reduction' property fails for analytic sets:

If \(A_n, n > 0, \) are analytic subsets of \(\omega^\omega \) with \(\bigcup_{n>0} A_n = \omega^\omega \), then there exist analytic sets \(B_n, n > 0, \) such that \((\forall n)(B_n \subset A_n), \lim \sup B_n = \emptyset \) and \(\bigcup_{n>0} B_n = \omega^\omega \).

B. With the same notation as in the proof of the Theorem, define \(A^* = (\omega^\omega \times \omega^\omega) \setminus Q \). Then \(A^* \) is \(\Sigma^1_1 \) and its vertical sections, being cofinite, are of measure one under any continuous probability measure on \(\omega^\omega \), are comeager and are dense \(G_\delta \)'s. But, as is easy to check, \(A^* \) does not admit a Borel \((\Delta^1_1) \) uniformization. This shows that the uniformization results of Blackwell and Ryll-Nardzewski [1], Sarbadhikari [3] and Srivastava [4] do not extend to analytic sets.

The author is grateful to Professor Ashok Maitra for helpful discussions.

REFERENCES

Indian Statistical Institute, 203, B. T. Road, Calcutta 700035, India