Finite transferable lattices are sharply transferable
HTML articles powered by AMS MathViewer
- by C. R. Platt
- Proc. Amer. Math. Soc. 81 (1981), 355-358
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597639-8
- PDF | Request permission
Abstract:
A lattice $\mathfrak {L}$ is called transferable if and only if, whenever $\mathfrak {L}$ can be embedded into the lattice $I(\mathcal {K})$ of all ideals of a lattice $\mathcal {K}$, $\mathfrak {L}$ can be embedded into $\mathcal {K}$ itself. If for every lattice embedding $f$ of $\mathfrak {L}$ into $I(\mathcal {K})$ there exists an embedding $g$ of $\mathfrak {L}$ into $\mathcal {K}$ satisfying the further condition that for $x$ and $y$ in $L$, $f(x) \in g(y)$ holds if and only if $x \leqslant y$, then $\mathfrak {L}$ is called sharply transferable. It is shown that every finite transferable lattice is sharply transferable.References
- Alan Day, Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices, Canadian J. Math. 31 (1979), no. 1, 69–78. MR 518707, DOI 10.4153/CJM-1979-008-x
- B. Jónsson and J. B. Nation, A report on sublattices of a free lattice, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) Colloq. Math. Soc. János Bolyai, Vol. 17, North-Holland, Amsterdam, 1977, pp. 223–257. MR 0472614
- H. Gaskill, G. Grätzer, and C. R. Platt, Sharply transferable lattices, Canadian J. Math. 27 (1975), no. 6, 1246–1262. MR 406879, DOI 10.4153/CJM-1975-130-5
- H. S. Gaskill and C. R. Platt, Sharp transferability and finite sublattices of free lattices, Canadian J. Math. 27 (1975), no. 5, 1036–1041. MR 389687, DOI 10.4153/CJM-1975-109-7
- George Grätzer, Universal algebra, Trends in Lattice Theory (Sympos., U.S. Naval Academy, Annapolis, Md., 1966) Van Nostrand Reinhold, New York, 1970, pp. 173–210. MR 0281674
- G. Grätzer and C. R. Platt, Two embedding theorems for lattices, Proc. Amer. Math. Soc. 69 (1978), no. 1, 21–24. MR 465963, DOI 10.1090/S0002-9939-1978-0465963-5
- G. Grätzer and C. R. Platt, A characterization of sharply transferable lattices, Canadian J. Math. 32 (1980), no. 1, 145–154. MR 559791, DOI 10.4153/CJM-1980-011-8
- G. Grätzer, C. R. Platt, and B. Sands, Embedding lattices into lattices of ideals, Pacific J. Math. 85 (1979), no. 1, 65–75. MR 571627
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 355-358
- MSC: Primary 06B05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597639-8
- MathSciNet review: 597639