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THE BRAUER GROUP IS TORSION

DAVID J. SALTMAN

Abstract. We present a new proof that ii A is an Azumaya algebra over a

commutative ring R of rank n2, then A" « A ®R • • ■ ®Ä A is a split Azumaya

algebra EndÄ(P). We provide a description of P, including that it is a direct

summand oí A".

In [3], a well-known fact about the Brauer group of a field was generalized to

show that the Brauer group of a commutative ring was torsion. In fact, if A is

Azumaya of constant rank n2 over R, then A" (= A ®Ä • • • ®Ä A) — EndR(P)

for P an progenerator. In this note we will present a relatively elementary proof of

this theorem, and we will also describe P as a specific direct summand of A ". It

should be noted that our argument is related to one that has been used in the case

R is a field (see, for example, [6]).

Our proof begins much like the standard one, with faithfully flat splittings. Fix A

and R as above. There is a faithfully flat commutative ring extension R c S such

that A ®R S « Mn(S) ai Ends( V) where F is a free S module of rank n (e.g. [4, p.

106]). We call such an S and V a free splitting of A. Given such a free splitting, we

will identify A ®R S, Mn(S) and Ends(K). Also, if r > 1 is an integer, then

Ar <8>R S is naturally isomorphic to Ends(Fr) = End^(F <8>s • • • ®s V). Identify

Ar ®R S with this endomorphism ring.

Let tr: A -» R be the reduced trace map. In [4, p. 112] (result attributed to

Goldman), the reduced trace map is used to define a very useful element a G A

®RA. In fact, a is uniquely defined by the property that a = Sx, ® v, where

tr(a) = 2x,ay, for all a G A. The properties of a are listed in the next lemma.

T 1       /     \ 2 1Lemma 1. (a)cr = 1.

(b) o(a ® b) = (b ® a)ctfor alla, b G A.

(c) Let S, V be any free splitting of A. Consider

a®\(=A2®RS = Ends(K ® V).

Then a ® 1 is the map defined by a ® l(u ® w) = w ® v.

Proof. Parts (a) and (b) are directly from [4]. As for (c), the uniqueness of a is

used to show that a ® 1 = Syfc, <8> eß, where the etJ are any matrix units for

A ®B S. Translated into maps, that is just (c).
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The above facts can be generalized to higher tensor powers of A as follows. Let

m be an integer m < n. The symmetric group, Sm, acts on A m = A ®R ■ • • ®R A

in the natural way. If S and V are a free splitting oi A, Am ®R S has been

identified with Ends( Vm). The natural action of Sm on Vm induces the action of Sm

onAm®R S.

Theorem 2. For each a G Sm there is a unit aa G Am such that

(a)a;lßan = a(ß)forallß G Am.

(b) The map a —» aa is a homomorphism from Sm to the group of units of Am.

(c) If S and V are a free splitting of A, then a„® 1 G Am ®R S, considered as an

endomorphism of Vm, is just the map a.

(d) The aa's are linearly independent over R.

Proof. For a fixed S and V, we use (c) to define a'„ G A m ®R S. To prove parts

(a) and (b), it suffices to show that the a'a are in the image of Am. As Sm is

generated by 2-cycles, we may assume a is a 2-cycle. But after obvious identifica-

tions, this case is covered by Lemma 1. Part (c) for arbitrary S and V follows from

1(c). As for (d), it suffices to prove that the aa ® l's are linearly independent over

S, and this follows from the easy observation that Vm is a faithful module over the

group algebra S(Sm).    Q.E.D.

We now turn to the algebra A ", where we recall that A has rank n2 over R. In

A ", we define ß = 2S sgn(a)aa. Of course, sgn(a) is ± 1 depending on whether the

permutation a is even or odd. Let S and V be any free splitting of A. Consider

ß ® 1 as an S endomorphism of V. (ß ® \)(xx ® • • • ®x„) = 0 if x,, = x, for

i ¥=j. If vx, . . . , vn are an S basis of V, we quickly see that (/? ® l)(V) is

generated over S by the single element w = 2S sgn(a)t>o(1) ® • • • ®ua(/l). What is

more, w is part of a free basis of V". Let W be the kernel of ß ® 1, so W is a direct

summand of V. The left ideal (A" <S)R S)(ß ® 1), as a subset of End^F"), is

exactly those endomorphisms which are zero on W. Now set J = A "ß. Then

(A"/J) ®Ä 5 » (An ®R S)/(An ®Ä 5)()8 ® 1) - Wom.s(W, V) as 5 modules,

so (A "/J) ®R S is an S progenerator. Since S is faithfully flat over R, A "/J is an

R progenerator (e.g. [1, p. 34]). Since A" is Azumaya over R. A"/J is a projective

A " module and so / is an A " direct summand. We have proved most of the first

part of the following theorem.

Theorem 3. (a) / = A "ß is a A "-direct summand of A ", and an R progenerator of

rank n".

(b) A " * EndR(J).

Proof. Part (a) has been shown, except for the trivial calculation of the rank of

/. As for (b), / is a faithful A " module because it is a faithful R module (e.g. [2, p.

54]). The injection A " -> EndR(J) must be surjective using the double centralizer

theorem and the equal R ranks oi A" and EndR(J) (e.g. [2, p. 57]).    Q.E.D.

As a final remark let us note that the proof of Theorem 3 is a special case of

more general phenomenon. If B is an Azumaya algebra over a field F of dimension

n2, the rank of any b G B can be unambiguously defined as (l//i)(dimF Bb). Let A
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be an Azumaya algebra over R, with rank n2, and let 93 Ç R be a prime ideal of R.

For any a G A, we define the rank of a at 98 to be the rank of a ® 1 G ^4 ®Ä A",

where A" is the field of quotients of Ä/98. We say a El A has constant rank r if a

has rank r at every prime ideal of R. Using arguments as in [5, p. 339], one can

show that if a has constant rank r then Aa is an R progenerator of rank nr and an

A direct summand of A. The element ß used above has constant rank one.
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