A note on singular integrals with weights
HTML articles powered by AMS MathViewer
- by Douglas S. Kurtz and Richard L. Wheeden
- Proc. Amer. Math. Soc. 81 (1981), 391-397
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597648-9
- PDF | Request permission
Abstract:
We prove two results concerning the behavior on weighted ${L^p}$ spaces of Calderón-Zygmund singular integrals formed with kernels whose ${L^1}$ moduli of continuity satisfy the Dini condition. We also prove a result about the behavior of multiplier operators.References
- A. P. Calderón, Mary Weiss, and A. Zygmund, On the existence of singular integrals, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 56–73. MR 0338709
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- A.-P. Calderón and A. Zygmund, A note on singular integrals, Studia Math. 65 (1979), no. 1, 77–87. MR 554542, DOI 10.4064/sm-65-1-77-87
- Peter W. Jones, Factorization of $A_{p}$ weights, Ann. of Math. (2) 111 (1980), no. 3, 511–530. MR 577135, DOI 10.2307/1971107
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt and Richard L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258. MR 285938, DOI 10.1090/S0002-9947-1971-0285938-7
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 391-397
- MSC: Primary 42B20; Secondary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597648-9
- MathSciNet review: 597648