New support points of $\mathcal {S}$ and extreme points of $\mathcal {HS}$
HTML articles powered by AMS MathViewer
- by Kent Pearce
- Proc. Amer. Math. Soc. 81 (1981), 425-428
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597655-6
- PDF | Request permission
Abstract:
Let $\mathcal {S}$ be the usual class of univalent analytic functions $f$ on $\{ z\left | {|z|} \right . < 1\}$ normalized by $f(z) = z + {a_2}{z^2} + \cdots$. We prove that the functions \[ {f_{x,y}}(z) = \frac {{z - \tfrac {1} {2}(x + y){z^2}}} {{{{(1 - yz)}^2}}},\quad \left | x \right | = \left | y \right | = 1,x \ne y,\] which are support points of $\mathcal {C}$, the subclass of $\mathcal {S}$ of close-to-convex functions, and extreme points of $\mathcal {H}\mathcal {C}$, are support points of $\mathcal {S}$ and extreme points of $\mathcal {H}\mathcal {S}$ whenever $0 < \left | {\arg ( - x/y)} \right | \leqslant \pi /4$. We observe that the known bound of $\pi /4$ for the acute angle between the omitted arc of a support point of $\mathcal {S}$ and the radius vector is achieved by the functions ${f_{x,y}}$ with $\left | {\arg ( - x/y)} \right | = \pi /4$.References
- Louis Brickman, Extreme points of the set of univalent functions, Bull. Amer. Math. Soc. 76 (1970), 372–374. MR 255788, DOI 10.1090/S0002-9904-1970-12483-1
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- Louis Brickman and Donald Wilken, Support points of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523–528. MR 328057, DOI 10.1090/S0002-9939-1974-0328057-1 J. E. Brown, Geometric properties of a class of support points of univalent functions (manuscript).
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- E. Grassmann, W. Hengartner, and G. Schober, Support points of the class of close-to-convex functions, Canad. Math. Bull. 19 (1976), no. 2, 177–179. MR 486471, DOI 10.4153/CMB-1976-027-8 R. Hornblower and D. R. Wilken, On the support points of close-to-convex functions (manuscript). W. E. Kirwan and R. W. Pell, Extremal properties for a class of slit conformal mappings (manuscript).
- Albert Pfluger, Lineare Extremalprobleme bei schlichten Funktionen, Ann. Acad. Sci. Fenn. Ser. A. I. 489 (1971), 32 (German). MR 296276
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 425-428
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597655-6
- MathSciNet review: 597655