Holomorphic maps that extend to automorphisms of a ball
HTML articles powered by AMS MathViewer
- by Walter Rudin
- Proc. Amer. Math. Soc. 81 (1981), 429-432
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597656-8
- PDF | Request permission
Abstract:
It is proved, under hypotheses that may be close to minimal, that certain types of biholomorphic maps of subregions of the unit ball in ${{\mathbf {C}}^n}$ have the extension property to which the title alludes.References
- H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249â256. MR 352531, DOI 10.1007/BF01351851
- H. Alexander, Proper holomorphic mappings in $C^{n}$, Indiana Univ. Math. J. 26 (1977), no. 1, 137â146. MR 422699, DOI 10.1512/iumj.1977.26.26010
- John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529â569. MR 422683, DOI 10.2307/2373900
- Alexander Nagel and Walter Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), no. 4, 841â865. MR 425178 S. I. PinÄuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649. â, On the analytic continuation of holomorphic mappings, Math. USSR-Sb. 27 (1975), 375-392. â, Analytic continuation of mappings along strictly pseudoconvex hypersurfaces, Soviet Math. Dokl. 18 (1977), 1237-1240.
- Jean-Pierre Rosay, Sur une caractĂ©risation de la boule parmi les domaines de $\textbf {C}^{n}$ par son groupe dâautomorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91â97 (French, with English summary). MR 558590
- B. Wong, Characterization of the unit ball in $\textbf {C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253â257. MR 492401, DOI 10.1007/BF01403050
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 429-432
- MSC: Primary 32D15; Secondary 32H99
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597656-8
- MathSciNet review: 597656