Convergence of $L_{p}$ approximations as $p\rightarrow \infty$
HTML articles powered by AMS MathViewer
- by Richard B. Darst
- Proc. Amer. Math. Soc. 81 (1981), 433-436
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597657-X
- PDF | Request permission
Abstract:
Let $(\Omega , \mathcal {A}, \mu )$ be a probability space and let $\mathcal {B}$ be a subsigma-algebra of $\mathcal {A}$. Let $A = {L_\infty }(\Omega , \mathcal {A}], \mu )$ and let $B = {L_\infty }(\Omega ,\mathcal {B},\mu )$. Let $f \in A$, and for $1 < p < \infty$, let ${f_p}$ denote the best ${L_p}$ approximation to $f$ by elements of ${L_p}(\Omega ,\mathcal {B},\mu )$. It is shown that ${\lim _{p \to \infty }}{f_p}$ exists a.e. The function ${f_\infty }$ defined by ${f_\infty }(x) = {\lim _{p \to \infty }}{f_p}(x)$ is a best ${L_\infty }$ approximation to $f$ by elements of $B:||f - f_\infty ||_\infty = \inf \{ ||f - g||_\infty ; g \in B \}$. Indeed, ${f_\infty }$ is a best best ${L_\infty }$ approximation to $f$ by elements of $B$ in the sense that for each $E \in \mathcal {B}$ the restriction, ${f_\infty }|E$, of ${f_\infty }$ to $E$ is a best ${L_\infty }$ approximation to the restriction, $f|E$, of $f$ to $E$. Since there is at most one best best ${L_\infty }$ approximation to $f$,${f_\infty }$, is the best best ${L_\infty }$ approximation to $f$ by elements of $B$.References
- C. K. Chui, P. W. Smith, and J. D. Ward, Favardβs solution is the limit of $W^{k,p}$-splines, Trans. Amer. Math. Soc. 220 (1976), 299β305. MR 422954, DOI 10.1090/S0002-9947-1976-0422954-0
- Jean Descloux, Approximations in $L^{p}$ and Chebyshev approximations, J. Soc. Indust. Appl. Math. 11 (1963), 1017β1026. MR 159172
- L. A. Karlovitz, Construction of nearest points in the $L^{p}$, $p$ even, and $L^{\infty }$ norms. I, J. Approximation Theory 3 (1970), 123β127. MR 265829, DOI 10.1016/0021-9045(70)90019-5 G. Polya, Sur un algorithme toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une fonction continue quelconque, Compt. Rend. 157 (1913), 480-483.
- John R. Rice, The approximation of functions. Vol. 2: Nonlinear and multivariate theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0244675
- Vasant A. Ubhaya, Isotone optimization. II, J. Approximation Theory 12 (1974), 315β331. MR 385424, DOI 10.1016/0021-9045(74)90075-6
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 433-436
- MSC: Primary 41A50; Secondary 41A65, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597657-X
- MathSciNet review: 597657