Total stability for neutral functional differential equations
HTML articles powered by AMS MathViewer
- by A. F. Izé and A. A. Freiria
- Proc. Amer. Math. Soc. 81 (1981), 437-442
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597658-1
- PDF | Request permission
Abstract:
The basic idea of this work is to use Lyapunov functionals to show that for neutral functional differential equations, uniform asymptotic stability implies total stability.References
- Marianito Cruz A. and Jack K. Hale, Stability of functional differential equations of neutral type, J. Differential Equations 7 (1970), 334–355. MR 257516, DOI 10.1016/0022-0396(70)90114-2
- Jack K. Hale, Functional differential equations, Applied Mathematical Sciences, Vol. 3, Springer-Verlag New York, New York-Heidelberg, 1971. MR 0466837
- A. F. Izé and J. G. dos Reis, Stability of perturbed neutral functional differential equations, Nonlinear Anal. 2 (1978), no. 5, 563–571. MR 512152, DOI 10.1016/0362-546X(78)90004-4
- Junji Kato and Yasutaka Sibuya, Catastrophic deformation of a flow and non-existence of almost periodic solutions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 2, 267–279. MR 466760
- Orlando Lopes, Stability and forced oscillations, J. Math. Anal. Appl. 55 (1976), no. 3, 686–698. MR 446657, DOI 10.1016/0022-247X(76)90075-5
- Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, vol. 9, Mathematical Society of Japan, Tokyo, 1966. MR 0208086
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 437-442
- MSC: Primary 34K20
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597658-1
- MathSciNet review: 597658