Not every $d$-symmetric operator is GCR
HTML articles powered by AMS MathViewer
- by C. Ray Rosentrater
- Proc. Amer. Math. Soc. 81 (1981), 443-446
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597659-3
- PDF | Request permission
Abstract:
Let $T$ be an element of $\mathcal {B}(\mathcal {H})$, the algebra of bounded linear operators on the Hilbert space $\mathcal {H}$. The derivation induced by $T$ is the map ${\delta _T}(X) = TX - XT$ from $\mathcal {B}(\mathcal {H})$ into itself. $T$ is $d$-symmetric if the norm closure of the range of ${\delta _T}$, $\mathcal {R}{({\delta _T})^\_}$, is closed under taking adjoints. This paper answers the question of whether every $d$-symmetric operator is GCR by giving an example of an NGCR weighted shift that is also $d$-symmetric.References
- Joel Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135–140. MR 312313, DOI 10.1090/S0002-9939-1973-0312313-6
- Joel Anderson, John W. Bunce, James A. Deddens, and J. P. Williams, $C^{\ast }$-algebras and derivation ranges, Acta Sci. Math. (Szeged) 40 (1978), no. 3-4, 211–227. MR 515202
- William Arveson, An invitation to $C^*$-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR 0512360
- John W. Bunce and James A. Deddens, $C^{\ast }$-algebras generated by weighted shifts, Indiana Univ. Math. J. 23 (1973/74), 257–271. MR 341108, DOI 10.1512/iumj.1973.23.23022
- B. E. Johnson and J. P. Williams, The range of a normal derivation, Pacific J. Math. 58 (1975), no. 1, 105–122. MR 380490
- Donal P. O’Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc. 208 (1975), 1–25. MR 385632, DOI 10.1090/S0002-9947-1975-0385632-1
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- Joseph G. Stampfli, Derivations on ${\cal B}({\cal H})$: the range, Illinois J. Math. 17 (1973), 518–524. MR 318914
- J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273–279. MR 308809
- J. P. Williams, On the range of a derivation. II, Proc. Roy. Irish Acad. Sect. A 74 (1974), 299–310. Spectral Theory Symposium (Trinity Coll.,Dublin, 1974). MR 358370
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 443-446
- MSC: Primary 47B47; Secondary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597659-3
- MathSciNet review: 597659