On the iterated logarithm law for local time
HTML articles powered by AMS MathViewer
- by Edwin Perkins
- Proc. Amer. Math. Soc. 81 (1981), 470-472
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597665-9
- PDF | Request permission
Abstract:
If $s(t,x)$ is the local time of a Brownian motion, we show that $\theta (\alpha ) = \lim {\sup _{t \to \infty }}{\inf _{\left | x \right | \leqslant \alpha {t^{1/2}}{{(2\log \log t)}^{ - 1/2}}}}s(t,x){(2t\log \log t)^{ - 1/2}}$ satisfies \[ {((1 - {\alpha ^{1/2}}) \vee 0)^2} \leqslant \theta (\alpha ) \leqslant {(2\alpha )^{ - 1}} \wedge 1.\] In particular, it follows from a result of Kesten that \[ \lim \sup \limits _{t \to \infty } s(t,x){(2t\log \log t)^{ - 1/2}} = 1\] for all $x$ a.s.References
- Harry Kesten, An iterated logarithm law for local time, Duke Math. J. 32 (1965), 447–456. MR 178494
- F. B. Knight, Random walks and a sojourn density process of Brownian motion, Trans. Amer. Math. Soc. 109 (1963), 56–86. MR 154337, DOI 10.1090/S0002-9947-1963-0154337-6
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 470-472
- MSC: Primary 60J55; Secondary 60F15, 60J65
- DOI: https://doi.org/10.1090/S0002-9939-1981-0597665-9
- MathSciNet review: 597665