GROWTH OF POLYNOMIALS WITH ZEROS OUTSIDE A CIRCLE

ABDUL AZIZ AND Q. G. MOHAMMAD

Abstract. Let \(P(z) \) be a polynomial of degree \(n \) having all its zeros in \(|z| > k > 1 \). For \(k = 1 \), it is known that
\[
\max_{|z| = R > 1} |P(z)| < \frac{R^n + 1}{2} \max_{|z| = 1} |P(z)|.
\]
In this paper we consider the case \(k > 1 \) and obtain a sharp result

Let \(P(z) \) be a polynomial of degree \(n \) such that \(\max_{|z| = 1} |P(z)| = 1 \), then
\[
\max_{|z| = R > 1} |P(z)| < R^n. \tag{1}
\]
Inequality (1) is a simple deduction from the Maximum Modulus Principle (see [4, p. 346] or [3, Vol. I, p. 137, problem III 269]). It was conjectured by Erdős and first proved by Lax [2] that, if \(P(z) \neq 0 \) in \(|z| < 1 \) then
\[
\max_{|z| = 1} |P'(z)| < n/2. \tag{2}
\]
Ankeny and Rivlin [1] used (2) to prove the following theorem.

Theorem A. If \(P(z) \) is a polynomial of degree \(n \) with \(\max_{|z| = 1} |P(z)| = 1 \) and \(P(z) \) has no zeros in the disk \(|z| < 1 \), then
\[
\max_{|z| = R > 1} |P(z)| < \frac{R^n + 1}{2}. \tag{3}
\]
The result is best possible and equality in (3) holds for \(P(z) = (z^n + 1)/2 \).

We shall generalize Theorem A by proving the following theorems.

Theorem 1. If \(P(z) \) is a polynomial of degree \(n \) with \(\max_{|z| = 1} |P(z)| = 1 \) and \(P(z) \) has no zeros in the disk \(|z| < k \) where \(K > 1 \), then
\[
\max_{|z| = R > 1} |P(z)| < \frac{(R^n + 1)(R + k)^n}{(R + k)^n + (1 + Rk)^n}. \tag{4}
\]
Theorem 1 is a generalization of Theorem A in a compact form but unfortunately with the exception of \(n = 1 \), (4) does not appear to be sharp for \(k > 1 \).

However, a precise estimate is given by the following theorem.

Received by the editors December 17, 1979 and, in revised form, March 27, 1980.
AMS (MOS) subject classifications (1970). Primary 30A06, 30A64; Secondary 26A82.
Key words and phrases. Growth of maximum modulus, inequalities for polynomials.

© 1981 American Mathematical Society
0002-9939/81/0000-0160/$02.25

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 2. If \(P(z) \) is a polynomial of degree \(n \) with \(\max_{|z|=1} |P(z)| = 1 \) and \(P(z) \) has no zeros in the disk \(|z| < k \) where \(k > 1 \), then for \(R > k \) we have
\[
\max_{|z|=R} |P(z)| < \frac{R^n + k^n}{1+k^n} \quad \text{for } R > k^2
\]
and
\[
\max_{|z|=R} |P(z)| < \frac{(R+k)^n}{(1+k)^n} \quad \text{for } 1 < R < k^2.
\]

The result is best possible with equality in (5) for \(P(z) = \frac{z^n + k^n}{1+k^n} \) and in (6) for \(P(z) = \frac{z + k^n}{(1+k)^n} \).

For the proofs of these theorems we need the following Lemma.

Lemma. If \(P(z) \) is a polynomial of degree \(n \) with \(\max_{|z|=1} |P(z)| = 1 \), then
\[
|P(Re^{i\theta})| + |Q(Re^{i\theta})| < R^n + 1, \quad 0 < \theta < 2\pi,
\]
where \(Q(z) = z^n P(1/z) \) and \(R > 1 \).

Proof of the Lemma. Since \(|P(z)| < 1 \) for \(|z| = 1 \), therefore, if \(\alpha \) is a complex number such that \(|\alpha| > 1 \), it follows from Rouche’s theorem that the polynomial \(F(z) = P(z) - \alpha \) does not vanish inside the unit circle. Thus the polynomial
\[
G(z) = z^n F(1/z) = z^n P(1/z) - \alpha z^n = Q(z) - \alpha z^n
\]
has all its zeros in \(|z| < 1 \) and \(|F(z)| = |G(z)| \) for \(|z| = 1 \). Hence \(|G(z)/F(z)| \) is analytic on and inside the unit circle, and on the boundary \(|G(z)/F(z)| = 1 \). By the Maximum Modulus Principle it follows that \(|G(z)| < |F(z)| \) for \(|z| < 1 \). Replacing \(z \) by \(1/z \) we get \(|z^n G(1/z)| < |z^n F(1/z)| \) for \(|z| > 1 \). Since \(z^n G(1/z) = F(z) \), we conclude that \(|F(z)| < |G(z)| \) for \(|z| > 1 \). Therefore, in particular
\[
|F(Re^{i\theta})| < |G(Re^{i\theta})| \quad \text{where } R > 1 \text{ and } 0 < \theta < 2\pi.
\]
This gives
\[
|P(Re^{i\theta}) - \alpha| < |Q(Re^{i\theta}) - \alpha R^n e^{i\theta}|, \quad 0 < \theta < 2\pi.
\]

Now choosing an argument of \(\alpha \) such that \(|Q(Re^{i\theta}) - \alpha R^n e^{i\theta}| = |\alpha| R^n - |Q(Re^{i\theta})| \), we obtain
\[
|P(Re^{i\theta})| - |\alpha| < |\alpha| R^n - |Q(Re^{i\theta})|, \quad 0 < \theta < 2\pi.
\]
Equivalently
\[
|P(Re^{i\theta})| + |Q(Re^{i\theta})| < |\alpha|(R^n + 1), \quad 0 < \theta < 2\pi.
\]

Letting now \(|\alpha| \to 1 \), we obtain (7) and this proves the Lemma.

Proof of Theorem 1. Since the polynomial \(P(z) \) has all its zeros in \(|z| > k > 1 \), we write
\[
P(z) = \prod_{j=1}^{n} (z - r_j e^{i\theta}) \quad \text{where } r_j > k, j = 1, 2, \ldots, n.
\]
Then \(Q(z) = z^n P(1/z) = \prod_{j=1}^{n} (1 - z r_j e^{-i \theta}) \) so that clearly we have for \(0 < \theta < 2\pi \) and for \(R > 1 \)

\[
|P(Re^{i\theta})/Q(Re^{i\theta})| = \prod_{j=1}^{n} \left| \left(Re^{i\theta} - r_j e^{i\theta} \right) / \left(1 - R r_j e^{i(\theta - \theta)} \right) \right|
\]

\[
= \prod_{j=1}^{n} \left| \left(Re^{i(\theta - \theta)} - r_j \right) / \left(1 - r_j Re^{i(\theta - \theta)} \right) \right|
\]

\[
< \prod_{j=1}^{n} \left(R + r_j \right) / \left(1 + R r_j \right)
\]

\[
< \prod_{j=1}^{n} \left(R + k \right) / \left(1 + R k \right) = (R + k)^n / (1 + R k)^n.
\]

This implies

\[
((1 + R k)^n / (R + k)^n)|P(Re^{i\theta})| < |Q(Re^{i\theta})|, \quad 0 < \theta < 2\pi.
\]

Combining this with the conclusion of the Lemma we obtain

\[
(1 + (1 + R k)^n / (R + k)^n)|P(Re^{i\theta})| < R^n + 1, \quad 0 < \theta < 2\pi.
\]

Consequently

\[
\max_{|z| > R > 1} |P(z)| < \frac{(R^n + 1)(R + k)^n}{(R + k)^n + (1 + R k)^n},
\]

which is the desired result.

Proof of Theorem 2. Since all the zeros of \(P(z) \) lie in \(|z| > k > 1 \), we write as before

\[
P(z) = \prod_{j=1}^{n} \left(z - r_j e^{i\theta} \right) \quad \text{where} \quad r_j > k, j = 1, 2, \ldots, n.
\]

Then \(Q(z) = z^n P(1/z) = \prod_{j=1}^{n} (1 - z r_j e^{-i\theta}) \). Now

\[
|P(k^2 e^{i\theta})/Q(e^{i\theta})| = \prod_{j=1}^{n} \left| \left(k^2 e^{i\theta} - r_j e^{i\theta} \right) / \left(1 - r_j e^{i(\theta - \theta)} \right) \right|
\]

\[
= \prod_{j=1}^{n} \left| \left(k^2 e^{i(\theta - \theta)} - r_j \right) / \left(1 - r_j e^{i(\theta - \theta)} \right) \right|
\]

\[
< \prod_{j=1}^{n} k = k^n \quad \text{for} \quad 0 < \theta < 2\pi.
\]

Therefore, we have

\[
|P(k^2 z)| < k^n |Q(z)| \quad \text{for} \quad |z| = 1.
\]

(8)

Since all the zeros of \(Q(z) \) lie in \(|z| < 1/k < 1 \), it follows from the Maximum Modulus Principle that

\[
|P(k^2 z)| < k^n |Q(z)| \quad \text{for} \quad |z| > 1.
\]

Hence in particular we have

\[
|P(k^2 Re^{i\theta})| < k^n |Q(Re^{i\theta})| \quad \text{for} \quad R > 1 \quad \text{and} \quad 0 < \theta < 2\pi.
\]
This inequality with the help of the Lemma gives

$$|P(k^2Re^{i\theta})| + k^n|P(Re^{i\theta})| < k^n(R^n + 1), \quad 0 < \theta < 2\pi.$$ (9)

Now for every given θ, $0 < \theta < 2\pi$, and for $R > 1$, we have either

$$|P(k^2Re^{i\theta})| - |P(Re^{i\theta})| < (k^n - 1)R^n$$ (10)

or

$$|P(k^2Re^{i\theta})| - |P(Re^{i\theta})| > (k^n - 1)R^n.$$ (11)

Inequality (10) yields with the help of inequality (9)

$$(1 + k^n)|P(k^2Re^{i\theta})| < (k^{2n}R^n + k^n)$$

and inequality (11) yields with the help of inequality (9)

$$(1 + k^n)|P(Re^{i\theta})| < |P(k^2Re^{i\theta})| + k^n|P(Re^{i\theta})| - (k^n - 1)R^n$$

$$< k^n(R^n + 1) - (k^n - 1)R^n = R^n + k^n.$$

Thus we have either

$$\max_{|z|=R} |P(z)| < (R^n + k^n)/(1 + k^n) \quad \text{for} \quad R > k^2$$ (12)

or

$$\max_{|z|=R} |P(z)| < (R^n + k^n)/(1 + k^n) \quad \text{for} \quad R > 1.$$ (13)

From (12) and (13), it follows that, we have in any case

$$\max_{|z|=R} |P(z)| < \frac{R^n + k^n}{1 + k^n} \quad \text{for} \quad R > k^2$$

and this proves the inequality (5).

To prove the inequality (6), we observe that for $1 < R < k^2$ and $0 < \theta < 2\pi$

$$|P(Re^{i\theta})|/P(e^{i\theta})| = \prod_{j=1}^{n} \left| \frac{(Re^{i\theta} - r_je^{i\theta})}{(e^{i\theta} - r_je^{i\theta})} \right|$$

$$= \prod_{j=1}^{n} \left| \frac{(Re^{i(\theta-\theta_j)} - r_j)}{(e^{i(\theta-\theta_j)} - r_j)} \right|$$

$$< \prod_{j=1}^{n} \frac{(R + r_j)}{(1 + r_j)}$$

$$< \prod_{j=1}^{n} \frac{(R + k)}{(1 + k)} = (R + k)^n/(1 + k)^n.$$

Consequently

$$\max_{|z|=R} |P(z)| < \frac{(R + k)^n}{(1 + k)^n} \quad \text{for} \quad 1 < R < k^2.$$

This is the inequality (6) and the theorem is completely established.
ACKNOWLEDGEMENT. The authors are highly thankful to the referee for his help and encouragement.

REFERENCES

POST GRADUATE DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR, HAZRATBAL, SRINAGAR 190006, INDIA