Transitivity and the $\gamma$-space conjecture in ordered spaces
HTML articles powered by AMS MathViewer
- by Jacob Kofner PDF
- Proc. Amer. Math. Soc. 81 (1981), 629-635 Request permission
Abstract:
Each generalized ordered $\gamma$-space is nonarchimedean quasimetrizable. Moreover, each generalized ordered space is $3$-transitive, i.e. for each neighbournet $U$ there is a transitive neighbournet $V \subset {U^3}$.References
- H. R. Bennett, Quasimetrizability and the $\gamma$-space property in certain generalized ordered spaces, Topology Proc. 4 (1979), no. 1, 1–12 (1980). MR 583684
- R. Engelking and D. Lutzer, Paracompactness in ordered spaces, Fund. Math. 94 (1977), no. 1, 49–58. MR 428278, DOI 10.4064/fm-94-1-25-33
- P. Fletcher and W. F. Lindgren, Transitive quasi-uniformities, J. Math. Anal. Appl. 39 (1972), 397–405. MR 317281, DOI 10.1016/0022-247X(72)90210-7
- Peter Fletcher and William F. Lindgren, Quasi-uniformities with a transitive base, Pacific J. Math. 43 (1972), 619–631. MR 319155 —, Quasiuniform spaces (to appear). R. Fox, On metrizability and quasi-metrizability (to appear).
- Gary Gruenhage, A note on quasi-metrizability, Canadian J. Math. 29 (1977), no. 2, 360–366. MR 436089, DOI 10.4153/CJM-1977-039-2
- R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253–263. MR 293580 H. Junnila, Covering properties and quasi-uniformities of topological spaces, Ph.D. thesis, Virginia Polytech. Inst. and State Univ., 1978.
- Heikki J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), no. 1, 83–108. MR 482677
- Ja. A. Kofner, $\Delta$-metrizable spaces, Mat. Zametki 13 (1973), 277–287 (Russian). MR 324664
- W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231–240. MR 341422
- D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. (Rozprawy Mat.) 89 (1971), 32. MR 324668
- V. W. Niemytzki, On the “third axiom of metric space”, Trans. Amer. Math. Soc. 29 (1927), no. 3, 507–513. MR 1501402, DOI 10.1090/S0002-9947-1927-1501402-2 —, Über die Axioms des metrischen Raumes, Math. Ann. 106 (1931), 666-671. Topology Proceedings 2 (1977), p. 687.
- W. A. Wilson, On Quasi-Metric Spaces, Amer. J. Math. 53 (1931), no. 3, 675–684. MR 1506845, DOI 10.2307/2371174
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 629-635
- MSC: Primary 54F05; Secondary 54E15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0601744-7
- MathSciNet review: 601744