On the dual of a certain operator ideal
HTML articles powered by AMS MathViewer
- by Gerhard Racher
- Proc. Amer. Math. Soc. 82 (1981), 36-38
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603597-X
- PDF | Request permission
Abstract:
For complex Banach spaces $E$ and $F$ and a real number $1 < p < \infty$ let ${S^p}(E,F)$ denote the operator ideal obtained by complex interpolation between the nuclear and the compact operators. If $E$ and $F$ are reflexive and one of them has the approximation property the dual of ${S^p}(E,F)$ is shown to be ${S^{p’}}(E’,F’)$, $p’$ conjugate to $p$.References
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Michael Cwikel, Complex interpolation spaces, a discrete definition and reiteration, Indiana Univ. Math. J. 27 (1978), no. 6, 1005–1009. MR 511254, DOI 10.1512/iumj.1978.27.27068
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Séminaire Bourbaki, Vol. 2, Soc. Math. France, Paris, 1995, pp. Exp. No. 69, 193–200 (French). MR 1609222
- Albrecht Pietsch and Hans Triebel, Interpolationstheorie für Banachideale von beschränkten linearen Operatoren, Studia Math. 31 (1968), 95–109 (German). MR 243341, DOI 10.4064/sm-31-1-95-109 G. Racher, Beispiele von Segalalgebren auf kompakten Gruppen, Universität Salzburg, 1978.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 36-38
- MSC: Primary 47D35; Secondary 46M35
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603597-X
- MathSciNet review: 603597