A PROOF OF THE BOUNDARY THEOREM

KENNETH R. DAVIDSON

ABSTRACT. This note contains a simple proof of the following theorem of Arveson:
If \mathcal{A} is an irreducible subspace of $\mathcal{B}(H)$, then the identity map $\phi(A) = A$ on \mathcal{A} has a unique completely positive extension to $\mathcal{B}(H)$ if and only if the quotient map q by the compact operators is not completely isometric on $S = [\mathcal{A} + \mathcal{A}^*]$.

Given a linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ of one C*-algebra into another, we can form the maps $\phi \otimes \text{id}_n$ of $n \times n$ matrices with coefficients in \mathcal{A} to $n \times n$ matrices with coefficients in \mathcal{B} by taking (A_{ij}) to $(\phi(A_{ij}))$. The map ϕ is said to be completely positive if $\phi \otimes \text{id}_n$ is positive for all n. These maps have proved to be of importance in the study of extensions of C*-algebras (e.g., [3], [4]), and in the study of nonselfadjoint subalgebras of C*-algebras [1], [2]. The difference between positive and completely positive maps has provided insight into the difference between positivity and sums of squares and Hilbert's seventeenth problem [5].

Stinespring [7] showed that complete positivity is intimately connected with the algebraic structure of the C*-algebra. He showed that if $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$ is a unital (\(\phi(I) = I\)), completely positive map of a C*-algebra \mathcal{A} into the bounded operators on a Hilbert space \mathcal{K}, then ϕ has the form $\phi(A) = V^*\pi(A)V$, where π is a *-representation of \mathcal{A} on another Hilbert space \mathcal{K} and $V: \mathcal{K} \rightarrow \mathcal{K}$ is an isometric embedding of \mathcal{K} into \mathcal{K}. In general, positive maps are not this nice, but in commutative algebras every positive map is completely positive.

Arveson [1] recognized that $\mathcal{B}(\mathcal{K})$ is injective for completely positive maps. He proved that if ϕ is a completely positive map from a selfadjoint subspace (containing the identity) of a C*-algebra \mathcal{A} into $\mathcal{B}(\mathcal{K})$, then ϕ has a completely positive extension $\phi_1: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$. In his study [1], [2] of nonselfadjoint subalgebras of C*-algebras, he showed that completely positive maps on these subalgebras which have a unique completely positive extension of the whole C*-algebra play an important role. In the important special case of an irreducible subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{K})$, it was shown that “sufficiently many” of these maps exist provided the identity map restricted to \mathcal{A} has a unique completely positive extension.

Let \mathcal{A} be an irreducible linear subspace of $\mathcal{B}(\mathcal{K})$, and let S be the closed linear span of $\mathcal{A} \cup \mathcal{A}^*$. A map $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$ is completely contractive if $\|\phi \otimes \text{id}_n\| < 1$ for all n. Such a ϕ has a unique completely positive extension to S, namely set $\phi(A^*) = \phi(A)^*$ and extend by linearity. Corresponding, every completely positive map with $\phi(I) = I$ is completely contractive. We say that ϕ is completely isometric.
A PROOF OF THE BOUNDARY THEOREM

if \(\phi \otimes \text{id}_n \) is isometric for all \(n \). Let \(q \) denote the quotient map of \(\mathcal{B}(\mathcal{K}) \) onto the Calkin algebra \(\mathcal{B}(\mathcal{K})/\mathcal{C}(\mathcal{K}) \) where \(\mathcal{C}(\mathcal{K}) \) is the ideal of compact operators.

We can now state Arveson’s “Boundary Theorem” [2] which gives necessary and sufficient conditions for the identity map on \(\mathcal{K} \) to have a unique completely positive extension to \(\mathcal{B}(\mathcal{K}) \) (namely the identity map). The purpose of this note is to provide a simpler proof of this theorem.

Theorem The identity map \(\phi_0(A) = A \) restricted to \(\mathcal{K} \) has a unique completely positive extension to \(\mathcal{B}(\mathcal{K}) \) if and only if \(q \) is not completely isometric on \(\mathcal{S} = [\mathcal{A} + \mathcal{A}^*] \).

Proof. One direction is straightforward. If \(q \) is completely isometric on \(\mathcal{S} \), then the map \(\psi_0: q(A) = A \) is a completely positive map of \(q(\mathcal{S}) \) into \(\mathcal{B}(\mathcal{K}) \). By Arveson’s extension theorem, there is a completely positive map \(\psi \) from the Calkin algebra into \(\mathcal{B}(\mathcal{K}) \) which extends \(\psi_0 \). Then \(\phi = \psi \cdot q \) extends \(\phi_0 \) and annihilates the compact operators; so it is not the identity map.

For the converse, let \(\phi \) be any completely positive extension of \(\phi_0 \). Since \(q \) is not completely isometric on \(\mathcal{S} \), there is an integer \(n \) so that \(q \otimes \text{id}_n \) is not isometric on \(\mathcal{S} \otimes \mathcal{M}_n \). \((\mathcal{M}_n) \) denotes the \(n \times n \) matrices over \(\mathcal{C} \). The map \(\phi_0 \otimes \text{id}_n \) has a completely positive extension \(\phi \otimes \text{id}_n \) to \(\mathcal{B}(\mathcal{K}) \otimes \mathcal{M}_n \) which is the identity map if and only if \(\phi \) is the identity. So without loss of generality, we can suppose that \(q \) is not isometric on \(\mathcal{S} \).

By Stinespring’s theorem [7], there is a representation \(\pi \) of \(\mathcal{B}(\mathcal{K}) \) on a Hilbert space \(\mathcal{K} \) and an isometry \(V: \mathcal{K} \to \mathcal{K} \) such that \(\phi(X) = V^* \pi(X) V \) for all \(X \) in \(\mathcal{B}(\mathcal{K}) \). \(\mathcal{C}(\mathcal{K}) \) is a two-sided ideal in \(\mathcal{B}(\mathcal{K}) \) and its only irreducible representation is the identity representation. So \(\pi \) can be decomposed as \(\pi = \pi_a \otimes \pi_s \) on \(\mathcal{K} = \mathcal{K}_a \oplus \mathcal{K}_s \) so that \(\pi_a \) is a multiple of the identity representation, and \(\pi_s \) annihilates the compact operators [6, §4.7.22]. We identify \(\mathcal{K}_a \) with a direct sum \(\Sigma \mathcal{K} \) of copies of \(\mathcal{K} \) via \(\pi_a = n \cdot \text{id} \), where \(n \) is some cardinal number. Also, we can factor \(\pi_s = \pi_s \circ q \).

Choose a \(T \) in \(\mathcal{S} \) so that \(\|T\| > \|q(T)\| \). Then there is a unit vector \(\xi \) such that \(\|T\xi\| = \|T\| \). Furthermore, \(\mathcal{E} = \{\xi: \|T\xi\| = \|T\| \cdot \|\xi\|\} \) is a finite dimensional subspace. To see this, write \(T = U|T| \) in its polar decomposition. Then \(\|T\| = \|T\| \cdot \|q(T)\| = \|q(|T|)\| \). So the restriction of \(|T| \) to the spectral subspace \(E(\|q(T)\| + \epsilon, \|T\|) \) is compact and nonzero. So the subspace \(E(\|T\|) \) is nonempty and finite dimensional, and is precisely \(\mathcal{E} \).

If \(\xi \in \mathcal{E} \), then \(V\xi \in \mathcal{K}_a \). For if \(V\xi = \nu_a \oplus \nu_s \),

\[
\|T\xi\|^2 = \|\phi(T)\xi\|^2 = \|V^*(\pi_a(T)\nu_a \oplus \pi_s \circ q(T)\nu_s)\|^2 < \|T\|^2\|\nu_a\|^2 + \|q(T)\|^2\|\nu_s\|^2 < \|T\|\|\xi\|^2.
\]

The extreme terms are equal, so it follows that \(\nu_s = 0 \) and \(\|\pi_a(T)\nu_a\| = \|T\|\|\xi\| \). Thus, \(V\mathcal{E} \subset \oplus \Sigma \mathcal{E} \).

Let \(\mathcal{K} \) be a minimal nonzero subspace of \(\mathcal{E} \) satisfying \(V\mathcal{K} \subset \oplus \Sigma \mathcal{K} \). Let \(\Gamma = \{X \in \mathcal{B}(\mathcal{K}): VXV = \pi(X)VV \} \) for all \(\nu \) in \(\mathcal{K} \). Then \(\Gamma \) is a closed linear space containing the identity \(I \). We will show that if \(X \) belongs to \(\Gamma \) and \(\mathcal{S} \) belongs to \(\mathcal{S} \), then \(SX \) belongs to \(\Gamma \).
Let X and S be fixed, and set $\mathcal{N}_0 = \{ \nu \in \mathcal{N} : \|XS\nu\| = \|SX\| \cdot \|\nu\| \}$. If ν belongs to \mathcal{N}_0, then
\[
\|XS\nu\| = \|\phi(S)X\nu\| = \|V^*\pi(S)VX\nu\| = \|V^*\pi(SX)\nu\| < \|\pi(SX)|_{\mathcal{N}_0}\| \cdot \|\nu\| = \|SX\| \cdot \|\nu\| = \|SX\|.
\]
Hence ν belongs to $\bigoplus \mathcal{N}_0$ and $V\mathcal{N}_0 \subseteq \bigoplus \mathcal{N}_0$. By the minimality of \mathcal{N}, we must have $\mathcal{N} = \mathcal{N}_0$. It also follows that $\|\pi(SX)\nu\| = \|V^*\pi(SX)\nu\| = \|V\pi(SX)\nu\|$. So
\[
\pi(SX)\nu = VV^*\pi(S)\pi(X)\nu = VV^*\pi(S)VX\nu = V\phi(S)X\nu = VSX\nu.
\]
This holds for all ν in $\mathcal{N}_0 = \mathcal{N}$, so SX belongs to Γ.

Since S is selfadjoint, Γ must contain $C^*(S)$. As noted earlier, the orthogonal projection onto S belongs to $C^*(S)$, so $C^*(S)$ contains a nonzero compact operator. Since \mathcal{K} is irreducible, $C^*(S)$ must contain all compact operators. If X and S are operators in $C^*(S)$,
\[
XS\nu = V^*VXS\nu = V^*\pi(XS)\nu = V^*\pi(X)\pi(S)\nu = V^*\pi(XVS\nu = \phi(X)S\nu.
\]
But $C^*(S)$ is transitive, thus $\phi(X) = X$ for all X in $C^*(S)$.

Finally, since ϕ is the identity on the compact operators, $V\mathcal{K}$ must be contained in \mathcal{K}_0. Consequently, $\pi = \pi_0$ is ultra-weakly continuous. Hence ϕ is the identity on all of $\mathcal{B}(\mathcal{K})$.

REFERENCES

Department of Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1